RESOURCE

Structure-based assessment of diseaserelated mutations in human voltage-gated sodium channels

  • Weiyun Huang 1,2,3 ,
  • Minhao Liu 2 ,
  • S. Frank Yan , 4 ,
  • Nieng Yan , 1,2,3
Expand
  • 1. State Key Laboratory of Membrane Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
  • 2. Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
  • 3. Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
  • 4. Molecular Design and Chemical Biology, Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, Shanghai 201203, China

Received date: 18 Nov 2016

Accepted date: 09 Jan 2017

Published date: 05 Jul 2017

Copyright

2017 The Author(s) 2017. This article is published with open access at Springerlink.com and journal.hep.com.cn

Abstract

Voltage-gated sodium (Nav) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Nav channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Nav channels, with Nav1.1 and Nav1.5 each harboring more than 400 mutations. Nav channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Nav channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Cav) channel Cav1.1 provides a template for homology-based structural modeling of the evolutionarily related Nav channels. In this Resource article, we summarized all the reported disease-related mutations in human Nav channels, generated a homologous model of human Nav1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Nav channels, the analysis presented here serves as the base framework for mechanistic investigation of Nav channelopathies and for potential structure-based drug discovery.

Cite this article

Weiyun Huang , Minhao Liu , S. Frank Yan , Nieng Yan . Structure-based assessment of diseaserelated mutations in human voltage-gated sodium channels[J]. Protein & Cell, 2017 , 8(6) : 401 -438 . DOI: 10.1007/s13238-017-0372-z

1
ArnoldWD, FeldmanDH, RamirezS, HeL, KassarD, QuickA, KlassenTL, LaraM, NguyenJ, KisselJT (2015) Defective fast inactivation recovery of Nav 1.4 in congenital myasthenic syndrome.Ann Neurol77:840–850

DOI

2
BlanchardMG, WillemsenMH, WalkerJB, Dib-HajjSD, WaxmanSG, JongmansMC, KleefstraT, van de WarrenburgBP, PraamstraP, NicolaiJ (2015) De novo gain-of-function and loss-offunction mutations of SCN8A in patients with intellectual disabilities and epilepsy.J Med Genet52:330–337

DOI

3
CatterallWA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels.Neuron26:13–25

DOI

4
CatterallWA (2012a) Sodium channel mutations and epilepsy.In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. National Center for Biotechnology Information (US), Bethesda

DOI

5
CatterallWA (2012b) Voltage-gated sodium channels at 60: structure, function and pathophysiology.J Physiol590:2577–2589

DOI

6
CatterallWA (2014) Structure and function of voltage-gated sodium channels at atomic resolution.Exp Physiol99:35–51

DOI

7
CatterallWA, GoldinAL, WaxmanSG (2005) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels.Pharmacol Rev57:397–409

DOI

8
CatterallWA, KalumeF, OakleyJC (2010) NaV1.1 channels and epilepsy.J Physiol588:1849–1859

DOI

9
ChoiJS, Dib-HajjSD, WaxmanSG (2006) Inherited erythermalgia: limb pain from an S4 charge-neutral Na channelopathy.Neurology67:1563–1567

DOI

10
ChoiJS, ZhangL, Dib-HajjSD, HanC, TyrrellL, LinZ, WangX, YangY, WaxmanSG (2009) Mexiletine-responsive erythromelalgia due to a new Na(v)1.7 mutation showing use-dependent current fall-off.Exp Neurol216:383–389

DOI

11
ChoiJS, BoraleviF, BrissaudO, Sanchez-MartinJ, Te MorscheRH, Dib-HajjSD, DrenthJP, WaxmanSG (2011) Paroxysmal extreme pain disorder: a molecular lesion of peripheral neurons.Nat Rev Neurol7:51–55

DOI

12
CorrochanoS, MannikkoR, JoycePI, McGoldrickP, WettsteinJ, LassiG, Raja RayanDL, BlancoG, QuinnC, LiavasA (2014) Novel mutations in human and mouse SCN4A implicate AMPK in myotonia and periodic paralysis.Brain137:3171–3185

DOI

13
CorryB, ThomasM (2012) Mechanism of ion permeation and selectivity in a voltage gated sodium channel.J Am Chem Soc134:1840–1846

DOI

14
de KovelCG, MeislerMH, BrilstraEH, van BerkestijnFM, van’t SlotR, van LieshoutS, NijmanIJ, O’BrienJE, HammerMF, EstacionM (2014) Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy.Epilepsy Res108:1511–1518

DOI

15
Dib-HajjSD, EstacionM, JareckiBW, TyrrellL, FischerTZ, LawdenM, CumminsTR, WaxmanSG (2008) Paroxysmal extreme pain disorder M1627K mutation in human Nav1.7 renders DRG neurons hyperexcitable.Mol Pain4:37

DOI

16
Dib-HajjSD, YangY, BlackJA, WaxmanSG (2013) The Na(V)1.7 sodium channel: from molecule to man.Nat Rev Neurosci14:49–62

DOI

17
DjouhriL, NewtonR, LevinsonSR, BerryCM, CarruthersB, LawsonSN (2003) Sensory and electrophysiological properties of guineapig sensory neurones expressing Nav 1.7 (PN1) Na+ channel alpha subunit protein.J Physiol546:565–576

DOI

18
EscaygA, GoldinAL (2010) Sodium channel SCN1A and epilepsy: mutations and mechanisms.Epilepsia51:1650–1658

DOI

19
EstacionM, Dib-HajjSD, BenkePJ, Te MorscheRH, EastmanEM, MacalaLJ, DrenthJP, WaxmanSG (2008) NaV1.7 gain-offunction mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders.J Neurosci28:11079–11088

DOI

20
EstacionM, GasserA, Dib-HajjSD, WaxmanSG (2010) A sodium channel mutation linked to epilepsy increases ramp and persistent current of Nav1.3 and induces hyperexcitability in hippocampal neurons.Exp Neurol224:362–368

DOI

21
EstacionM, O’BrienJE, ConraveyA, HammerMF, WaxmanSG, Dib-HajjSD, MeislerMH(2014) A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy.Neurobiol Dis69:117–123

DOI

22
FaberCG, HoeijmakersJG, AhnHS, ChengX, HanC, ChoiJS, EstacionM, LauriaG, VanhoutteEK, GerritsMM (2012a) Gain of function Nanu1.7 mutations in idiopathic small fiber neuropathy.Ann Neurol71:26–39

DOI

23
FaberCG, LauriaG, MerkiesIS, ChengX, HanC, AhnHS, PerssonAK, HoeijmakersJG, GerritsMM, PierroT (2012b) Gain-offunction Nav1.8 mutations in painful neuropathy.Proc Natl Acad Sci USA109:19444–19449

DOI

24
FertlemanCR, BakerMD, ParkerKA, MoffattS, ElmslieFV, AbrahamsenB, OstmanJ,KlugbauerN, WoodJN, GardinerRM (2006) SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes.Neuron52:767–774

DOI

25
GeorgeAL Jr (2005) Inherited disorders of voltage-gated sodium channels.J Clin Invest115:1990–1999

DOI

26
GoldinAL (2001) Resurgence of sodium channel research.Annu Rev Physiol63:871–894

DOI

27
GroomeJR, Lehmann-HornF, FanC, WolfM, WinstonV, MerliniL, Jurkat-RottK (2014) NaV1.4 mutations cause hypokalaemic periodic paralysis by disrupting IIIS4 movement during recovery.Brain137:998–1008

DOI

28
HanC, VasylyevD, MacalaLJ, GerritsMM, HoeijmakersJG, BekelaarKJ, Dib-HajjSD, FaberCG, MerkiesIS, WaxmanSG (2014) The G1662S NaV1.8 mutation in small fibre neuropathy: impaired inactivation underlying DRG neuron hyperexcitability.J Neurol Neurosurg Psychiatry85:499–505

DOI

29
HanC, YangY, deGreef BT, HoeijmakersJG, GerritsMM, VerhammeC, QuJ, LauriaG, MerkiesIS, FaberCG (2015) The domain II S4-S5 linker in Nav1.9: a missense mutation enhances activation, impairs fast inactivation, and produces human painful neuropathy.Neuromol Med17:158–169

DOI

30
HeinemannSH, TerlauH, StuhmerW, ImotoK, NumaS (1992) Calcium channel characteristics conferred on the sodium channel by single mutations.Nature356:441–443

DOI

31
HuangJ, YangY, ZhaoP, GerritsMM, HoeijmakersJG, BekelaarK, MerkiesIS, FaberCG, Dib-HajjSD, WaxmanSG (2013) Smallfiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons.J Neurosci33:14087–14097

DOI

32
HuangJ, HanC, EstacionM, VasylyevD, HoeijmakersJG, GerritsMM, TyrrellL, LauriaG, FaberCG, Dib-HajjSD (2014) Gainof-function mutations in sodium channel Na(v)1.9 in painful neuropathy.Brain137:1627–1642

DOI

33
JareckiBW, SheetsPL, JacksonJO 2nd, CumminsTR (2008) Paroxysmal extreme pain disorder mutations within the D3/S4-S5 linker of Nav1.7 cause moderate destabilization of fast inactivation.J Physiol586:4137–4153

DOI

34
KimJB (2014) Channelopathies.Korean J Pediatr57:1–18

DOI

35
KistAM, SagafosD, RushAM, NeacsuC, EberhardtE, SchmidtR, LundenLK, OrstavikK, KaluzaL, MeentsJ (2016) SCN10A mutation in a patient with erythromelalgia enhances C-fiber activity dependent slowing.PLoS One11:e0161789

DOI

36
LampertA, Dib-HajjSD, TyrrellL, WaxmanSG (2006) Size matters: erythromelalgia mutation S241T in Nav1.7 alters channel gating.J Biol Chem281:36029–36035

DOI

37
LampertA, O’ReillyAO, ReehP, LefflerA (2010) Sodium channelopathies and pain.Pflugers Arch460:249–263

DOI

38
LaurentG, SaalS, AmarouchMY, BeziauDM, MarsmanRF, FaivreL, BarcJ, DinaC, BertauxG, BarthezO (2012) Multifocal ectopic Purkinje-related premature contractions: a new SCN5Arelated cardiac channelopathy.J Am Coll Cardiol60:144–156

DOI

39
LauxmannS,Boutry-KryzaN,RivierC,MuellerS,HedrichUB,MaljevicS, SzepetowskiP, LercheH, LescaG(2013) An SCN2A mutation in a family with infantile seizures from Madagascar reveals an increased subthreshold Na(+) current.Epilepsia54:e117–e121

DOI

40
LeipoldE, LiebmannL, KorenkeGC, HeinrichT, GiesselmannS, BaetsJ, EbbinghausM, GoralRO, StodbergT, HenningsJC (2013) A de novo gain-of-function mutation in SCN11A causes loss of pain perception.Nat Genet45:1399–1404

DOI

41
LeipoldE, Hanson-KahnA, FrickM, GongP, BernsteinJA, VoigtM, KatonaI, OliverGoralR, AltmullerJ, NurnbergP (2015) Cold-aggravated pain in humans caused by a hyperactive NaV1.9 channel mutant.Nat Commun6:10049

DOI

42
LiaoY, DeprezL, MaljevicS, PitschJ, ClaesL, HristovaD, JordanovaA, Ala-MelloS, Bellan-KochA, BlazevicD (2010) Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy.Brain133:1403–1414

DOI

43
LossinC, WangDW, RhodesTH, VanoyeCG, GeorgeAL Jr (2002) Molecular basis of an inherited epilepsy.Neuron34:877–884

DOI

44
MakiyamaT, AkaoM, ShizutaS, DoiT, NishiyamaK, OkaY, OhnoS, NishioY, TsujiK, ItohH (2008) A novel SCN5A gain-offunction mutation M1875T associated with familial atrial fibrillation.J Am Coll Cardiol52:1326–1334

DOI

45
MantegazzaM, GambardellaA, RusconiR, SchiavonE, AnnesiF, CassuliniRR, LabateA, CarrideoS, ChifariR, CaneviniMP (2005) Identification of an Nav1.1 sodium channel (SCN1A) lossof-function mutation associated with familial simple febrile seizures.Proc Natl Acad Sci USA102:18177–18182

DOI

46
MisraSN, KahligKM, GeorgeAL Jr (2008) Impaired NaV1.2 function and reduced cell surface expression in benign familial neonatalinfantile seizures.Epilepsia49:1535–1545

DOI

47
MOE (2016) Molecular operating environment (MOE), 2013.08.Chemical Computing Group Inc, Montreal

48
OlsonTM, MichelsVV, BallewJD, ReynaSP, KarstML, HerronKJ, HortonSC, RodehefferRJ, AndersonJL (2005) Sodium channel mutations and susceptibility to heart failure and atrial fibrillation.JAMA293:447–454

DOI

49
PayandehJ, ScheuerT, ZhengN, CatterallWA (2011) The crystal structure of a voltage-gated sodium channel.Nature475:353–358

DOI

50
PlummerNW, MeislerMH (1999) Evolution and diversity of mammalian sodium channel genes.Genomics57:323–331

DOI

51
RemmeCA, VerkerkAO, NuyensD, van GinnekenAC, van BrunschotS, BeltermanCN, WildersR, van RoonMA, TanHL, WildeAA (2006) Overlap syndrome of cardiac sodium channel disease in mice carrying the equivalent mutation of human SCN5A-1795insD.Circulation114:2584–2594

DOI

52
ShiX, YasumotoS, KurahashiH, NakagawaE, FukasawaT, UchiyaS, HiroseS (2012) Clinical spectrum of SCN2A mutations.Brain Dev34:541–545

DOI

53
SmitsJP, KoopmannTT, WildersR, VeldkampMW, OpthofT, BhuiyanZA, MannensMM, BalserJR, TanHL, BezzinaCR (2005) A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families.J Mol Cell Cardiol38:969–981

DOI

54
SongW, ShouW (2012) Cardiac sodium channel Nav1.5 mutations and cardiac arrhythmia.Pediatr Cardiol33:943–949

DOI

55
SunYM, FavreI, SchildL, MoczydlowskiE (1997) On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel—effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving.J Gen Physiol110:693–715

DOI

56
SuterMR, BhuiyanZA, LaedermannCJ, KuntzerT, SchallerM, StauffacherMW, RouletE, AbrielH, DecosterdI, WiderC (2015) p. L1612P, a novel voltage-gated sodium channel Nav1.7 mutation inducing a cold sensitive paroxysmal extreme pain disorder.Anesthesiology122:414–423

DOI

57
SwanH, AmarouchMY, LeinonenJ, MarjamaaA, KuceraJP, Laitinen-ForsblomPJ, LahtinenAM, PalotieA, KontulaK, ToivonenL (2014) Gain-of-function mutation of the SCN5A gene causes exercise-induced polymorphic ventricular arrhythmias.Circ Cardiovasc Genet7:771–781

DOI

58
TanHL, Bink-BoelkensMT, BezzinaCR, ViswanathanPC, Beaufort-KrolGC, van TintelenPJ, vanden Berg MP, WildeAA, BalserJR (2001) A sodium-channel mutation causes isolated cardiac conduction disease.Nature409:1043–1047

DOI

59
TikhonovDB, ZhorovBS (2012) Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure.Mol Pharmacol82:97–104

DOI

60
VanoyeCG, GurnettCA, HollandKD, GeorgeAL Jr, KearneyJA (2014) Novel SCN3A variants associated with focal epilepsy in children.Neurobiol Dis62:313–322

DOI

61
VassilevPM, ScheuerT, CatterallWA (1988) Identification of an intracellular peptide segment involved in sodium channel inactivation.Science241:1658–1661

DOI

62
VeeramahKR, O’BrienJE, MeislerMH, ChengX, Dib-HajjSD, WaxmanSG, TalwarD, GirirajanS, EichlerEE, RestifoLL (2012) De novo pathogenic SCN8A mutation identified by wholegenome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP.Am J Hum Genet90:502–510

DOI

63
VeermanCC, WildeAA, LodderEM (2015) The cardiac sodium channel gene SCN5A and its gene product NaV1.5: role in physiology and pathophysiology.Gene573:177–187

DOI

64
WagnonJL, BarkerBS, HounshellJA, HaaxmaCA, ShealyA, MossT, ParikhS, MesserRD, PatelMK, MeislerMH (2016) Pathogenic mechanism of recurrent mutations of SCN8A in epileptic encephalopathy.Ann Clin Transl Neurol3:114–123

DOI

65
WestJW, PattonDE, ScheuerT, WangY, GoldinAL, CatterallWA (1992) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation.Proc Natl Acad Sci USA89:10910–10914

DOI

66
WuJ, YanZ, LiZ, YanC, LuS, DongM, YanN (2015) Structure of the voltage-gated calcium channel Cav1.1 complex.Science350:aad2395

DOI

67
WuJ, YanZ, LiZ, QianX, LuS, DongM, ZhouQ, YanN (2016) Structure of the voltage-gated calcium channel Cav1.1 at 3.6 A resolution.Nature537:191–196

DOI

68
YangY, Dib-HajjSD, ZhangJ, ZhangY, TyrrellL, EstacionM, WaxmanSG (2012) Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Na(V)1.7 mutant channel.Nat Commun3:1186

DOI

69
YangY, HuangJ, MisMA, EstacionM, MacalaL, ShahP, SchulmanBR, HortonDB, Dib-HajjSD, WaxmanSG (2016) Nav 1.7-A1632G mutation from a family with inherited erythromelalgia: enhanced firing of dorsal root ganglia neurons evoked by thermal stimuli.J Neurosci36:7511–7522

DOI

70
ZaharievaIT, ThorMG, OatesEC, vanKarnebeek C, HendsonG, BlomE, WittingN, RasmussenM, GabbettMT, RavenscroftG (2016) Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or ‘classical’ congenital myopathy.Brain139:674–691

DOI

71
ZhangX, RenW, DeCaenP, YanC, TaoX, TangL, WangJ, HasegawaK, KumasakaT, HeJ (2012) Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel.Nature486:130–134

DOI

72
ZhangXY, WenJ, YangW, WangC, GaoL, ZhengLH, WangT, RanK, LiY, LiX (2013) Gain-of-function mutations in SCN11A cause familial episodic pain.Am J Hum Genet93:957–966

DOI

Outlines

/