Structure-based assessment of diseaserelated mutations in human voltage-gated sodium channels
Weiyun Huang, Minhao Liu, S. Frank Yan, Nieng Yan
Structure-based assessment of diseaserelated mutations in human voltage-gated sodium channels
Voltage-gated sodium (Nav) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Nav channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Nav channels, with Nav1.1 and Nav1.5 each harboring more than 400 mutations. Nav channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Nav channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Cav) channel Cav1.1 provides a template for homology-based structural modeling of the evolutionarily related Nav channels. In this Resource article, we summarized all the reported disease-related mutations in human Nav channels, generated a homologous model of human Nav1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Nav channels, the analysis presented here serves as the base framework for mechanistic investigation of Nav channelopathies and for potential structure-based drug discovery.
Nav channels / channelopathy / Nav1.7 / structure modeling / pain
[1] |
ArnoldWD, FeldmanDH, RamirezS, HeL, KassarD, QuickA, KlassenTL, LaraM, NguyenJ, KisselJT
CrossRef
Google scholar
|
[2] |
BlanchardMG, WillemsenMH, WalkerJB, Dib-HajjSD, WaxmanSG, JongmansMC, KleefstraT, van de WarrenburgBP, PraamstraP, NicolaiJ
CrossRef
Google scholar
|
[3] |
CatterallWA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels.Neuron26:13–25
CrossRef
Google scholar
|
[4] |
CatterallWA (2012a) Sodium channel mutations and epilepsy.In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. National Center for Biotechnology Information (US), Bethesda
CrossRef
Google scholar
|
[5] |
CatterallWA (2012b) Voltage-gated sodium channels at 60: structure, function and pathophysiology.J Physiol590:2577–2589
CrossRef
Google scholar
|
[6] |
CatterallWA (2014) Structure and function of voltage-gated sodium channels at atomic resolution.Exp Physiol99:35–51
CrossRef
Google scholar
|
[7] |
CatterallWA, GoldinAL, WaxmanSG (2005) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels.Pharmacol Rev57:397–409
CrossRef
Google scholar
|
[8] |
CatterallWA, KalumeF, OakleyJC (2010) NaV1.1 channels and epilepsy.J Physiol588:1849–1859
CrossRef
Google scholar
|
[9] |
ChoiJS, Dib-HajjSD, WaxmanSG (2006) Inherited erythermalgia: limb pain from an S4 charge-neutral Na channelopathy.Neurology67:1563–1567
CrossRef
Google scholar
|
[10] |
ChoiJS, ZhangL, Dib-HajjSD, HanC, TyrrellL, LinZ, WangX, YangY, WaxmanSG (2009) Mexiletine-responsive erythromelalgia due to a new Na(v)1.7 mutation showing use-dependent current fall-off.Exp Neurol216:383–389
CrossRef
Google scholar
|
[11] |
ChoiJS, BoraleviF, BrissaudO, Sanchez-MartinJ, Te MorscheRH, Dib-HajjSD, DrenthJP, WaxmanSG (2011) Paroxysmal extreme pain disorder: a molecular lesion of peripheral neurons.Nat Rev Neurol7:51–55
CrossRef
Google scholar
|
[12] |
CorrochanoS, MannikkoR, JoycePI, McGoldrickP, WettsteinJ, LassiG, Raja RayanDL, BlancoG, QuinnC, LiavasA
CrossRef
Google scholar
|
[13] |
CorryB, ThomasM (2012) Mechanism of ion permeation and selectivity in a voltage gated sodium channel.J Am Chem Soc134:1840–1846
CrossRef
Google scholar
|
[14] |
de KovelCG, MeislerMH, BrilstraEH, van BerkestijnFM, van’t SlotR, van LieshoutS, NijmanIJ, O’BrienJE, HammerMF, EstacionM
CrossRef
Google scholar
|
[15] |
Dib-HajjSD, EstacionM, JareckiBW, TyrrellL, FischerTZ, LawdenM, CumminsTR, WaxmanSG (2008) Paroxysmal extreme pain disorder M1627K mutation in human Nav1.7 renders DRG neurons hyperexcitable.Mol Pain4:37
CrossRef
Google scholar
|
[16] |
Dib-HajjSD, YangY, BlackJA, WaxmanSG (2013) The Na(V)1.7 sodium channel: from molecule to man.Nat Rev Neurosci14:49–62
CrossRef
Google scholar
|
[17] |
DjouhriL, NewtonR, LevinsonSR, BerryCM, CarruthersB, LawsonSN (2003) Sensory and electrophysiological properties of guineapig sensory neurones expressing Nav 1.7 (PN1) Na+ channel alpha subunit protein.J Physiol546:565–576
CrossRef
Google scholar
|
[18] |
EscaygA, GoldinAL (2010) Sodium channel SCN1A and epilepsy: mutations and mechanisms.Epilepsia51:1650–1658
CrossRef
Google scholar
|
[19] |
EstacionM, Dib-HajjSD, BenkePJ, Te MorscheRH, EastmanEM, MacalaLJ, DrenthJP, WaxmanSG (2008) NaV1.7 gain-offunction mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders.J Neurosci28:11079–11088
CrossRef
Google scholar
|
[20] |
EstacionM, GasserA, Dib-HajjSD, WaxmanSG (2010) A sodium channel mutation linked to epilepsy increases ramp and persistent current of Nav1.3 and induces hyperexcitability in hippocampal neurons.Exp Neurol224:362–368
CrossRef
Google scholar
|
[21] |
EstacionM, O’BrienJE, ConraveyA, HammerMF, WaxmanSG, Dib-HajjSD, MeislerMH(2014) A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy.Neurobiol Dis69:117–123
CrossRef
Google scholar
|
[22] |
FaberCG, HoeijmakersJG, AhnHS, ChengX, HanC, ChoiJS, EstacionM, LauriaG, VanhoutteEK, GerritsMM
CrossRef
Google scholar
|
[23] |
FaberCG, LauriaG, MerkiesIS, ChengX, HanC, AhnHS, PerssonAK, HoeijmakersJG, GerritsMM, PierroT
CrossRef
Google scholar
|
[24] |
FertlemanCR, BakerMD, ParkerKA, MoffattS, ElmslieFV, AbrahamsenB, OstmanJ,KlugbauerN, WoodJN, GardinerRM
CrossRef
Google scholar
|
[25] |
GeorgeAL Jr (2005) Inherited disorders of voltage-gated sodium channels.J Clin Invest115:1990–1999
CrossRef
Google scholar
|
[26] |
GoldinAL (2001) Resurgence of sodium channel research.Annu Rev Physiol63:871–894
CrossRef
Google scholar
|
[27] |
GroomeJR, Lehmann-HornF, FanC, WolfM, WinstonV, MerliniL, Jurkat-RottK (2014) NaV1.4 mutations cause hypokalaemic periodic paralysis by disrupting IIIS4 movement during recovery.Brain137:998–1008
CrossRef
Google scholar
|
[28] |
HanC, VasylyevD, MacalaLJ, GerritsMM, HoeijmakersJG, BekelaarKJ, Dib-HajjSD, FaberCG, MerkiesIS, WaxmanSG (2014) The G1662S NaV1.8 mutation in small fibre neuropathy: impaired inactivation underlying DRG neuron hyperexcitability.J Neurol Neurosurg Psychiatry85:499–505
CrossRef
Google scholar
|
[29] |
HanC, YangY, deGreef BT, HoeijmakersJG, GerritsMM, VerhammeC, QuJ, LauriaG, MerkiesIS, FaberCG
CrossRef
Google scholar
|
[30] |
HeinemannSH, TerlauH, StuhmerW, ImotoK, NumaS (1992) Calcium channel characteristics conferred on the sodium channel by single mutations.Nature356:441–443
CrossRef
Google scholar
|
[31] |
HuangJ, YangY, ZhaoP, GerritsMM, HoeijmakersJG, BekelaarK, MerkiesIS, FaberCG, Dib-HajjSD, WaxmanSG (2013) Smallfiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons.J Neurosci33:14087–14097
CrossRef
Google scholar
|
[32] |
HuangJ, HanC, EstacionM, VasylyevD, HoeijmakersJG, GerritsMM, TyrrellL, LauriaG, FaberCG, Dib-HajjSD
CrossRef
Google scholar
|
[33] |
JareckiBW, SheetsPL, JacksonJO 2nd, CumminsTR (2008) Paroxysmal extreme pain disorder mutations within the D3/S4-S5 linker of Nav1.7 cause moderate destabilization of fast inactivation.J Physiol586:4137–4153
CrossRef
Google scholar
|
[34] |
KimJB (2014) Channelopathies.Korean J Pediatr57:1–18
CrossRef
Google scholar
|
[35] |
KistAM, SagafosD, RushAM, NeacsuC, EberhardtE, SchmidtR, LundenLK, OrstavikK, KaluzaL, MeentsJ
CrossRef
Google scholar
|
[36] |
LampertA, Dib-HajjSD, TyrrellL, WaxmanSG (2006) Size matters: erythromelalgia mutation S241T in Nav1.7 alters channel gating.J Biol Chem281:36029–36035
CrossRef
Google scholar
|
[37] |
LampertA, O’ReillyAO, ReehP, LefflerA (2010) Sodium channelopathies and pain.Pflugers Arch460:249–263
CrossRef
Google scholar
|
[38] |
LaurentG, SaalS, AmarouchMY, BeziauDM, MarsmanRF, FaivreL, BarcJ, DinaC, BertauxG, BarthezO
CrossRef
Google scholar
|
[39] |
LauxmannS,Boutry-KryzaN,RivierC,MuellerS,HedrichUB,MaljevicS, SzepetowskiP, LercheH, LescaG(2013) An SCN2A mutation in a family with infantile seizures from Madagascar reveals an increased subthreshold Na(+) current.Epilepsia54:e117–e121
CrossRef
Google scholar
|
[40] |
LeipoldE, LiebmannL, KorenkeGC, HeinrichT, GiesselmannS, BaetsJ, EbbinghausM, GoralRO, StodbergT, HenningsJC
CrossRef
Google scholar
|
[41] |
LeipoldE, Hanson-KahnA, FrickM, GongP, BernsteinJA, VoigtM, KatonaI, OliverGoralR, AltmullerJ, NurnbergP
CrossRef
Google scholar
|
[42] |
LiaoY, DeprezL, MaljevicS, PitschJ, ClaesL, HristovaD, JordanovaA, Ala-MelloS, Bellan-KochA, BlazevicD
CrossRef
Google scholar
|
[43] |
LossinC, WangDW, RhodesTH, VanoyeCG, GeorgeAL Jr (2002) Molecular basis of an inherited epilepsy.Neuron34:877–884
CrossRef
Google scholar
|
[44] |
MakiyamaT, AkaoM, ShizutaS, DoiT, NishiyamaK, OkaY, OhnoS, NishioY, TsujiK, ItohH
CrossRef
Google scholar
|
[45] |
MantegazzaM, GambardellaA, RusconiR, SchiavonE, AnnesiF, CassuliniRR, LabateA, CarrideoS, ChifariR, CaneviniMP
CrossRef
Google scholar
|
[46] |
MisraSN, KahligKM, GeorgeAL Jr (2008) Impaired NaV1.2 function and reduced cell surface expression in benign familial neonatalinfantile seizures.Epilepsia49:1535–1545
CrossRef
Google scholar
|
[47] |
MOE (2016) Molecular operating environment (MOE), 2013.08.Chemical Computing Group Inc, Montreal
|
[48] |
OlsonTM, MichelsVV, BallewJD, ReynaSP, KarstML, HerronKJ, HortonSC, RodehefferRJ, AndersonJL (2005) Sodium channel mutations and susceptibility to heart failure and atrial fibrillation.JAMA293:447–454
CrossRef
Google scholar
|
[49] |
PayandehJ, ScheuerT, ZhengN, CatterallWA (2011) The crystal structure of a voltage-gated sodium channel.Nature475:353–358
CrossRef
Google scholar
|
[50] |
PlummerNW, MeislerMH (1999) Evolution and diversity of mammalian sodium channel genes.Genomics57:323–331
CrossRef
Google scholar
|
[51] |
RemmeCA, VerkerkAO, NuyensD, van GinnekenAC, van BrunschotS, BeltermanCN, WildersR, van RoonMA, TanHL, WildeAA
CrossRef
Google scholar
|
[52] |
ShiX, YasumotoS, KurahashiH, NakagawaE, FukasawaT, UchiyaS, HiroseS (2012) Clinical spectrum of SCN2A mutations.Brain Dev34:541–545
CrossRef
Google scholar
|
[53] |
SmitsJP, KoopmannTT, WildersR, VeldkampMW, OpthofT, BhuiyanZA, MannensMM, BalserJR, TanHL, BezzinaCR
CrossRef
Google scholar
|
[54] |
SongW, ShouW (2012) Cardiac sodium channel Nav1.5 mutations and cardiac arrhythmia.Pediatr Cardiol33:943–949
CrossRef
Google scholar
|
[55] |
SunYM, FavreI, SchildL, MoczydlowskiE (1997) On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel—effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving.J Gen Physiol110:693–715
CrossRef
Google scholar
|
[56] |
SuterMR, BhuiyanZA, LaedermannCJ, KuntzerT, SchallerM, StauffacherMW, RouletE, AbrielH, DecosterdI, WiderC (2015) p. L1612P, a novel voltage-gated sodium channel Nav1.7 mutation inducing a cold sensitive paroxysmal extreme pain disorder.Anesthesiology122:414–423
CrossRef
Google scholar
|
[57] |
SwanH, AmarouchMY, LeinonenJ, MarjamaaA, KuceraJP, Laitinen-ForsblomPJ, LahtinenAM, PalotieA, KontulaK, ToivonenL
CrossRef
Google scholar
|
[58] |
TanHL, Bink-BoelkensMT, BezzinaCR, ViswanathanPC, Beaufort-KrolGC, van TintelenPJ, vanden Berg MP, WildeAA, BalserJR (2001) A sodium-channel mutation causes isolated cardiac conduction disease.Nature409:1043–1047
CrossRef
Google scholar
|
[59] |
TikhonovDB, ZhorovBS (2012) Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure.Mol Pharmacol82:97–104
CrossRef
Google scholar
|
[60] |
VanoyeCG, GurnettCA, HollandKD, GeorgeAL Jr, KearneyJA (2014) Novel SCN3A variants associated with focal epilepsy in children.Neurobiol Dis62:313–322
CrossRef
Google scholar
|
[61] |
VassilevPM, ScheuerT, CatterallWA (1988) Identification of an intracellular peptide segment involved in sodium channel inactivation.Science241:1658–1661
CrossRef
Google scholar
|
[62] |
VeeramahKR, O’BrienJE, MeislerMH, ChengX, Dib-HajjSD, WaxmanSG, TalwarD, GirirajanS, EichlerEE, RestifoLL
CrossRef
Google scholar
|
[63] |
VeermanCC, WildeAA, LodderEM (2015) The cardiac sodium channel gene SCN5A and its gene product NaV1.5: role in physiology and pathophysiology.Gene573:177–187
CrossRef
Google scholar
|
[64] |
WagnonJL, BarkerBS, HounshellJA, HaaxmaCA, ShealyA, MossT, ParikhS, MesserRD, PatelMK, MeislerMH (2016) Pathogenic mechanism of recurrent mutations of SCN8A in epileptic encephalopathy.Ann Clin Transl Neurol3:114–123
CrossRef
Google scholar
|
[65] |
WestJW, PattonDE, ScheuerT, WangY, GoldinAL, CatterallWA (1992) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation.Proc Natl Acad Sci USA89:10910–10914
CrossRef
Google scholar
|
[66] |
WuJ, YanZ, LiZ, YanC, LuS, DongM, YanN (2015) Structure of the voltage-gated calcium channel Cav1.1 complex.Science350:aad2395
CrossRef
Google scholar
|
[67] |
WuJ, YanZ, LiZ, QianX, LuS, DongM, ZhouQ, YanN (2016) Structure of the voltage-gated calcium channel Cav1.1 at 3.6 A resolution.Nature537:191–196
CrossRef
Google scholar
|
[68] |
YangY, Dib-HajjSD, ZhangJ, ZhangY, TyrrellL, EstacionM, WaxmanSG (2012) Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Na(V)1.7 mutant channel.Nat Commun3:1186
CrossRef
Google scholar
|
[69] |
YangY, HuangJ, MisMA, EstacionM, MacalaL, ShahP, SchulmanBR, HortonDB, Dib-HajjSD, WaxmanSG (2016) Nav 1.7-A1632G mutation from a family with inherited erythromelalgia: enhanced firing of dorsal root ganglia neurons evoked by thermal stimuli.J Neurosci36:7511–7522
CrossRef
Google scholar
|
[70] |
ZaharievaIT, ThorMG, OatesEC, vanKarnebeek C, HendsonG, BlomE, WittingN, RasmussenM, GabbettMT, RavenscroftG
CrossRef
Google scholar
|
[71] |
ZhangX, RenW, DeCaenP, YanC, TaoX, TangL, WangJ, HasegawaK, KumasakaT, HeJ
CrossRef
Google scholar
|
[72] |
ZhangXY, WenJ, YangW, WangC, GaoL, ZhengLH, WangT, RanK, LiY, LiX
CrossRef
Google scholar
|
/
〈 | 〉 |