Structure-based assessment of diseaserelated mutations in human voltage-gated sodium channels

Weiyun Huang, Minhao Liu, S. Frank Yan, Nieng Yan

PDF(3215 KB)
PDF(3215 KB)
Protein Cell ›› 2017, Vol. 8 ›› Issue (6) : 401-438. DOI: 10.1007/s13238-017-0372-z
RESOURCE
RESOURCE

Structure-based assessment of diseaserelated mutations in human voltage-gated sodium channels

Author information +
History +

Abstract

Voltage-gated sodium (Nav) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Nav channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Nav channels, with Nav1.1 and Nav1.5 each harboring more than 400 mutations. Nav channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Nav channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Cav) channel Cav1.1 provides a template for homology-based structural modeling of the evolutionarily related Nav channels. In this Resource article, we summarized all the reported disease-related mutations in human Nav channels, generated a homologous model of human Nav1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Nav channels, the analysis presented here serves as the base framework for mechanistic investigation of Nav channelopathies and for potential structure-based drug discovery.

Keywords

Nav channels / channelopathy / Nav1.7 / structure modeling / pain

Cite this article

Download citation ▾
Weiyun Huang, Minhao Liu, S. Frank Yan, Nieng Yan. Structure-based assessment of diseaserelated mutations in human voltage-gated sodium channels. Protein Cell, 2017, 8(6): 401‒438 https://doi.org/10.1007/s13238-017-0372-z

References

[1]
ArnoldWD, FeldmanDH, RamirezS, HeL, KassarD, QuickA, KlassenTL, LaraM, NguyenJ, KisselJT (2015) Defective fast inactivation recovery of Nav 1.4 in congenital myasthenic syndrome.Ann Neurol77:840–850
CrossRef Google scholar
[2]
BlanchardMG, WillemsenMH, WalkerJB, Dib-HajjSD, WaxmanSG, JongmansMC, KleefstraT, van de WarrenburgBP, PraamstraP, NicolaiJ (2015) De novo gain-of-function and loss-offunction mutations of SCN8A in patients with intellectual disabilities and epilepsy.J Med Genet52:330–337
CrossRef Google scholar
[3]
CatterallWA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels.Neuron26:13–25
CrossRef Google scholar
[4]
CatterallWA (2012a) Sodium channel mutations and epilepsy.In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. National Center for Biotechnology Information (US), Bethesda
CrossRef Google scholar
[5]
CatterallWA (2012b) Voltage-gated sodium channels at 60: structure, function and pathophysiology.J Physiol590:2577–2589
CrossRef Google scholar
[6]
CatterallWA (2014) Structure and function of voltage-gated sodium channels at atomic resolution.Exp Physiol99:35–51
CrossRef Google scholar
[7]
CatterallWA, GoldinAL, WaxmanSG (2005) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels.Pharmacol Rev57:397–409
CrossRef Google scholar
[8]
CatterallWA, KalumeF, OakleyJC (2010) NaV1.1 channels and epilepsy.J Physiol588:1849–1859
CrossRef Google scholar
[9]
ChoiJS, Dib-HajjSD, WaxmanSG (2006) Inherited erythermalgia: limb pain from an S4 charge-neutral Na channelopathy.Neurology67:1563–1567
CrossRef Google scholar
[10]
ChoiJS, ZhangL, Dib-HajjSD, HanC, TyrrellL, LinZ, WangX, YangY, WaxmanSG (2009) Mexiletine-responsive erythromelalgia due to a new Na(v)1.7 mutation showing use-dependent current fall-off.Exp Neurol216:383–389
CrossRef Google scholar
[11]
ChoiJS, BoraleviF, BrissaudO, Sanchez-MartinJ, Te MorscheRH, Dib-HajjSD, DrenthJP, WaxmanSG (2011) Paroxysmal extreme pain disorder: a molecular lesion of peripheral neurons.Nat Rev Neurol7:51–55
CrossRef Google scholar
[12]
CorrochanoS, MannikkoR, JoycePI, McGoldrickP, WettsteinJ, LassiG, Raja RayanDL, BlancoG, QuinnC, LiavasA (2014) Novel mutations in human and mouse SCN4A implicate AMPK in myotonia and periodic paralysis.Brain137:3171–3185
CrossRef Google scholar
[13]
CorryB, ThomasM (2012) Mechanism of ion permeation and selectivity in a voltage gated sodium channel.J Am Chem Soc134:1840–1846
CrossRef Google scholar
[14]
de KovelCG, MeislerMH, BrilstraEH, van BerkestijnFM, van’t SlotR, van LieshoutS, NijmanIJ, O’BrienJE, HammerMF, EstacionM (2014) Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy.Epilepsy Res108:1511–1518
CrossRef Google scholar
[15]
Dib-HajjSD, EstacionM, JareckiBW, TyrrellL, FischerTZ, LawdenM, CumminsTR, WaxmanSG (2008) Paroxysmal extreme pain disorder M1627K mutation in human Nav1.7 renders DRG neurons hyperexcitable.Mol Pain4:37
CrossRef Google scholar
[16]
Dib-HajjSD, YangY, BlackJA, WaxmanSG (2013) The Na(V)1.7 sodium channel: from molecule to man.Nat Rev Neurosci14:49–62
CrossRef Google scholar
[17]
DjouhriL, NewtonR, LevinsonSR, BerryCM, CarruthersB, LawsonSN (2003) Sensory and electrophysiological properties of guineapig sensory neurones expressing Nav 1.7 (PN1) Na+ channel alpha subunit protein.J Physiol546:565–576
CrossRef Google scholar
[18]
EscaygA, GoldinAL (2010) Sodium channel SCN1A and epilepsy: mutations and mechanisms.Epilepsia51:1650–1658
CrossRef Google scholar
[19]
EstacionM, Dib-HajjSD, BenkePJ, Te MorscheRH, EastmanEM, MacalaLJ, DrenthJP, WaxmanSG (2008) NaV1.7 gain-offunction mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders.J Neurosci28:11079–11088
CrossRef Google scholar
[20]
EstacionM, GasserA, Dib-HajjSD, WaxmanSG (2010) A sodium channel mutation linked to epilepsy increases ramp and persistent current of Nav1.3 and induces hyperexcitability in hippocampal neurons.Exp Neurol224:362–368
CrossRef Google scholar
[21]
EstacionM, O’BrienJE, ConraveyA, HammerMF, WaxmanSG, Dib-HajjSD, MeislerMH(2014) A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy.Neurobiol Dis69:117–123
CrossRef Google scholar
[22]
FaberCG, HoeijmakersJG, AhnHS, ChengX, HanC, ChoiJS, EstacionM, LauriaG, VanhoutteEK, GerritsMM (2012a) Gain of function Nanu1.7 mutations in idiopathic small fiber neuropathy.Ann Neurol71:26–39
CrossRef Google scholar
[23]
FaberCG, LauriaG, MerkiesIS, ChengX, HanC, AhnHS, PerssonAK, HoeijmakersJG, GerritsMM, PierroT (2012b) Gain-offunction Nav1.8 mutations in painful neuropathy.Proc Natl Acad Sci USA109:19444–19449
CrossRef Google scholar
[24]
FertlemanCR, BakerMD, ParkerKA, MoffattS, ElmslieFV, AbrahamsenB, OstmanJ,KlugbauerN, WoodJN, GardinerRM (2006) SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes.Neuron52:767–774
CrossRef Google scholar
[25]
GeorgeAL Jr (2005) Inherited disorders of voltage-gated sodium channels.J Clin Invest115:1990–1999
CrossRef Google scholar
[26]
GoldinAL (2001) Resurgence of sodium channel research.Annu Rev Physiol63:871–894
CrossRef Google scholar
[27]
GroomeJR, Lehmann-HornF, FanC, WolfM, WinstonV, MerliniL, Jurkat-RottK (2014) NaV1.4 mutations cause hypokalaemic periodic paralysis by disrupting IIIS4 movement during recovery.Brain137:998–1008
CrossRef Google scholar
[28]
HanC, VasylyevD, MacalaLJ, GerritsMM, HoeijmakersJG, BekelaarKJ, Dib-HajjSD, FaberCG, MerkiesIS, WaxmanSG (2014) The G1662S NaV1.8 mutation in small fibre neuropathy: impaired inactivation underlying DRG neuron hyperexcitability.J Neurol Neurosurg Psychiatry85:499–505
CrossRef Google scholar
[29]
HanC, YangY, deGreef BT, HoeijmakersJG, GerritsMM, VerhammeC, QuJ, LauriaG, MerkiesIS, FaberCG (2015) The domain II S4-S5 linker in Nav1.9: a missense mutation enhances activation, impairs fast inactivation, and produces human painful neuropathy.Neuromol Med17:158–169
CrossRef Google scholar
[30]
HeinemannSH, TerlauH, StuhmerW, ImotoK, NumaS (1992) Calcium channel characteristics conferred on the sodium channel by single mutations.Nature356:441–443
CrossRef Google scholar
[31]
HuangJ, YangY, ZhaoP, GerritsMM, HoeijmakersJG, BekelaarK, MerkiesIS, FaberCG, Dib-HajjSD, WaxmanSG (2013) Smallfiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons.J Neurosci33:14087–14097
CrossRef Google scholar
[32]
HuangJ, HanC, EstacionM, VasylyevD, HoeijmakersJG, GerritsMM, TyrrellL, LauriaG, FaberCG, Dib-HajjSD (2014) Gainof-function mutations in sodium channel Na(v)1.9 in painful neuropathy.Brain137:1627–1642
CrossRef Google scholar
[33]
JareckiBW, SheetsPL, JacksonJO 2nd, CumminsTR (2008) Paroxysmal extreme pain disorder mutations within the D3/S4-S5 linker of Nav1.7 cause moderate destabilization of fast inactivation.J Physiol586:4137–4153
CrossRef Google scholar
[34]
KimJB (2014) Channelopathies.Korean J Pediatr57:1–18
CrossRef Google scholar
[35]
KistAM, SagafosD, RushAM, NeacsuC, EberhardtE, SchmidtR, LundenLK, OrstavikK, KaluzaL, MeentsJ (2016) SCN10A mutation in a patient with erythromelalgia enhances C-fiber activity dependent slowing.PLoS One11:e0161789
CrossRef Google scholar
[36]
LampertA, Dib-HajjSD, TyrrellL, WaxmanSG (2006) Size matters: erythromelalgia mutation S241T in Nav1.7 alters channel gating.J Biol Chem281:36029–36035
CrossRef Google scholar
[37]
LampertA, O’ReillyAO, ReehP, LefflerA (2010) Sodium channelopathies and pain.Pflugers Arch460:249–263
CrossRef Google scholar
[38]
LaurentG, SaalS, AmarouchMY, BeziauDM, MarsmanRF, FaivreL, BarcJ, DinaC, BertauxG, BarthezO (2012) Multifocal ectopic Purkinje-related premature contractions: a new SCN5Arelated cardiac channelopathy.J Am Coll Cardiol60:144–156
CrossRef Google scholar
[39]
LauxmannS,Boutry-KryzaN,RivierC,MuellerS,HedrichUB,MaljevicS, SzepetowskiP, LercheH, LescaG(2013) An SCN2A mutation in a family with infantile seizures from Madagascar reveals an increased subthreshold Na(+) current.Epilepsia54:e117–e121
CrossRef Google scholar
[40]
LeipoldE, LiebmannL, KorenkeGC, HeinrichT, GiesselmannS, BaetsJ, EbbinghausM, GoralRO, StodbergT, HenningsJC (2013) A de novo gain-of-function mutation in SCN11A causes loss of pain perception.Nat Genet45:1399–1404
CrossRef Google scholar
[41]
LeipoldE, Hanson-KahnA, FrickM, GongP, BernsteinJA, VoigtM, KatonaI, OliverGoralR, AltmullerJ, NurnbergP (2015) Cold-aggravated pain in humans caused by a hyperactive NaV1.9 channel mutant.Nat Commun6:10049
CrossRef Google scholar
[42]
LiaoY, DeprezL, MaljevicS, PitschJ, ClaesL, HristovaD, JordanovaA, Ala-MelloS, Bellan-KochA, BlazevicD (2010) Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy.Brain133:1403–1414
CrossRef Google scholar
[43]
LossinC, WangDW, RhodesTH, VanoyeCG, GeorgeAL Jr (2002) Molecular basis of an inherited epilepsy.Neuron34:877–884
CrossRef Google scholar
[44]
MakiyamaT, AkaoM, ShizutaS, DoiT, NishiyamaK, OkaY, OhnoS, NishioY, TsujiK, ItohH (2008) A novel SCN5A gain-offunction mutation M1875T associated with familial atrial fibrillation.J Am Coll Cardiol52:1326–1334
CrossRef Google scholar
[45]
MantegazzaM, GambardellaA, RusconiR, SchiavonE, AnnesiF, CassuliniRR, LabateA, CarrideoS, ChifariR, CaneviniMP (2005) Identification of an Nav1.1 sodium channel (SCN1A) lossof-function mutation associated with familial simple febrile seizures.Proc Natl Acad Sci USA102:18177–18182
CrossRef Google scholar
[46]
MisraSN, KahligKM, GeorgeAL Jr (2008) Impaired NaV1.2 function and reduced cell surface expression in benign familial neonatalinfantile seizures.Epilepsia49:1535–1545
CrossRef Google scholar
[47]
MOE (2016) Molecular operating environment (MOE), 2013.08.Chemical Computing Group Inc, Montreal
[48]
OlsonTM, MichelsVV, BallewJD, ReynaSP, KarstML, HerronKJ, HortonSC, RodehefferRJ, AndersonJL (2005) Sodium channel mutations and susceptibility to heart failure and atrial fibrillation.JAMA293:447–454
CrossRef Google scholar
[49]
PayandehJ, ScheuerT, ZhengN, CatterallWA (2011) The crystal structure of a voltage-gated sodium channel.Nature475:353–358
CrossRef Google scholar
[50]
PlummerNW, MeislerMH (1999) Evolution and diversity of mammalian sodium channel genes.Genomics57:323–331
CrossRef Google scholar
[51]
RemmeCA, VerkerkAO, NuyensD, van GinnekenAC, van BrunschotS, BeltermanCN, WildersR, van RoonMA, TanHL, WildeAA (2006) Overlap syndrome of cardiac sodium channel disease in mice carrying the equivalent mutation of human SCN5A-1795insD.Circulation114:2584–2594
CrossRef Google scholar
[52]
ShiX, YasumotoS, KurahashiH, NakagawaE, FukasawaT, UchiyaS, HiroseS (2012) Clinical spectrum of SCN2A mutations.Brain Dev34:541–545
CrossRef Google scholar
[53]
SmitsJP, KoopmannTT, WildersR, VeldkampMW, OpthofT, BhuiyanZA, MannensMM, BalserJR, TanHL, BezzinaCR (2005) A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families.J Mol Cell Cardiol38:969–981
CrossRef Google scholar
[54]
SongW, ShouW (2012) Cardiac sodium channel Nav1.5 mutations and cardiac arrhythmia.Pediatr Cardiol33:943–949
CrossRef Google scholar
[55]
SunYM, FavreI, SchildL, MoczydlowskiE (1997) On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel—effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving.J Gen Physiol110:693–715
CrossRef Google scholar
[56]
SuterMR, BhuiyanZA, LaedermannCJ, KuntzerT, SchallerM, StauffacherMW, RouletE, AbrielH, DecosterdI, WiderC (2015) p. L1612P, a novel voltage-gated sodium channel Nav1.7 mutation inducing a cold sensitive paroxysmal extreme pain disorder.Anesthesiology122:414–423
CrossRef Google scholar
[57]
SwanH, AmarouchMY, LeinonenJ, MarjamaaA, KuceraJP, Laitinen-ForsblomPJ, LahtinenAM, PalotieA, KontulaK, ToivonenL (2014) Gain-of-function mutation of the SCN5A gene causes exercise-induced polymorphic ventricular arrhythmias.Circ Cardiovasc Genet7:771–781
CrossRef Google scholar
[58]
TanHL, Bink-BoelkensMT, BezzinaCR, ViswanathanPC, Beaufort-KrolGC, van TintelenPJ, vanden Berg MP, WildeAA, BalserJR (2001) A sodium-channel mutation causes isolated cardiac conduction disease.Nature409:1043–1047
CrossRef Google scholar
[59]
TikhonovDB, ZhorovBS (2012) Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure.Mol Pharmacol82:97–104
CrossRef Google scholar
[60]
VanoyeCG, GurnettCA, HollandKD, GeorgeAL Jr, KearneyJA (2014) Novel SCN3A variants associated with focal epilepsy in children.Neurobiol Dis62:313–322
CrossRef Google scholar
[61]
VassilevPM, ScheuerT, CatterallWA (1988) Identification of an intracellular peptide segment involved in sodium channel inactivation.Science241:1658–1661
CrossRef Google scholar
[62]
VeeramahKR, O’BrienJE, MeislerMH, ChengX, Dib-HajjSD, WaxmanSG, TalwarD, GirirajanS, EichlerEE, RestifoLL (2012) De novo pathogenic SCN8A mutation identified by wholegenome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP.Am J Hum Genet90:502–510
CrossRef Google scholar
[63]
VeermanCC, WildeAA, LodderEM (2015) The cardiac sodium channel gene SCN5A and its gene product NaV1.5: role in physiology and pathophysiology.Gene573:177–187
CrossRef Google scholar
[64]
WagnonJL, BarkerBS, HounshellJA, HaaxmaCA, ShealyA, MossT, ParikhS, MesserRD, PatelMK, MeislerMH (2016) Pathogenic mechanism of recurrent mutations of SCN8A in epileptic encephalopathy.Ann Clin Transl Neurol3:114–123
CrossRef Google scholar
[65]
WestJW, PattonDE, ScheuerT, WangY, GoldinAL, CatterallWA (1992) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation.Proc Natl Acad Sci USA89:10910–10914
CrossRef Google scholar
[66]
WuJ, YanZ, LiZ, YanC, LuS, DongM, YanN (2015) Structure of the voltage-gated calcium channel Cav1.1 complex.Science350:aad2395
CrossRef Google scholar
[67]
WuJ, YanZ, LiZ, QianX, LuS, DongM, ZhouQ, YanN (2016) Structure of the voltage-gated calcium channel Cav1.1 at 3.6 A resolution.Nature537:191–196
CrossRef Google scholar
[68]
YangY, Dib-HajjSD, ZhangJ, ZhangY, TyrrellL, EstacionM, WaxmanSG (2012) Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Na(V)1.7 mutant channel.Nat Commun3:1186
CrossRef Google scholar
[69]
YangY, HuangJ, MisMA, EstacionM, MacalaL, ShahP, SchulmanBR, HortonDB, Dib-HajjSD, WaxmanSG (2016) Nav 1.7-A1632G mutation from a family with inherited erythromelalgia: enhanced firing of dorsal root ganglia neurons evoked by thermal stimuli.J Neurosci36:7511–7522
CrossRef Google scholar
[70]
ZaharievaIT, ThorMG, OatesEC, vanKarnebeek C, HendsonG, BlomE, WittingN, RasmussenM, GabbettMT, RavenscroftG (2016) Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or ‘classical’ congenital myopathy.Brain139:674–691
CrossRef Google scholar
[71]
ZhangX, RenW, DeCaenP, YanC, TaoX, TangL, WangJ, HasegawaK, KumasakaT, HeJ (2012) Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel.Nature486:130–134
CrossRef Google scholar
[72]
ZhangXY, WenJ, YangW, WangC, GaoL, ZhengLH, WangT, RanK, LiY, LiX (2013) Gain-of-function mutations in SCN11A cause familial episodic pain.Am J Hum Genet93:957–966
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is published with open access at Springerlink.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(3215 KB)

Accesses

Citations

Detail

Sections
Recommended

/