RESEARCH ARTICLE

CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs

  • Lixia Wang 1,2,3 ,
  • Fei Yi 4 ,
  • Lina Fu 1,3 ,
  • Jiping Yang 1,3 ,
  • Si Wang 1,3 ,
  • Zhaoxia Wang 5 ,
  • Keiichiro Suzuki 6,7 ,
  • Liang Sun 9 ,
  • Xiuling Xu 1 ,
  • Yang Yu 8 ,
  • Jie Qiao 8 ,
  • Juan Carlos Izpisua Belmonte 6 ,
  • Ze Yang 9 ,
  • Yun Yuan , 5 ,
  • Jing Qu , 2,3 ,
  • Guang-Hui Liu , 1,3,10,11
Expand
  • 1. National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
  • 2. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
  • 3. University of Chinese Academy of Sciences, Beijing 100049, China
  • 4. Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
  • 5. Department of Neurology, Peking University First Hospital, Beijing 100034, China
  • 6. Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
  • 7. Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, N 135 Guadalupe, 30107 Murcia, Spain
  • 8. Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing 100191, China
  • 9. Beijing Hospital of the Ministry of Health, Beijing 100730, China
  • 10. Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
  • 11. Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China

Received date: 22 Dec 2016

Accepted date: 06 Mar 2017

Published date: 12 Jun 2017

Copyright

2017 The Author(s) 2017. This article is an open access publication

Abstract

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts of familial ALS patients bearing SOD1+/A272C and FUS+/G1566A mutations, respectively. We further generated gene corrected ALS iPSCs using CRISPR/Cas9 system. Genome-wide RNA sequencing (RNA-seq) analysis ofmotor neurons derived from SOD1+/A272C and corrected iPSCs revealed 899 aberrant transcripts. Our work may shed light on discovery of early biomarkers and pathways dysregulated in ALS, as well as provide a basis for novel therapeutic strategies to treat ALS.

Cite this article

Lixia Wang , Fei Yi , Lina Fu , Jiping Yang , Si Wang , Zhaoxia Wang , Keiichiro Suzuki , Liang Sun , Xiuling Xu , Yang Yu , Jie Qiao , Juan Carlos Izpisua Belmonte , Ze Yang , Yun Yuan , Jing Qu , Guang-Hui Liu . CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs[J]. Protein & Cell, 2017 , 8(5) : 365 -378 . DOI: 10.1007/s13238-017-0397-3

1
Al-ChalabiA, HardimanO (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol9:617–623

DOI

2
AlexianuME, HoBK, MohamedAH, La BellaV, SmithRG, AppelSH (1994) The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol36:846–858

DOI

3
AndersS, HuberW (2010) Differential expression analysis for sequence count data. Genome Biol11:1–12

DOI

4
AronicaE, CataniaMV, GeurtsJ, YankayaB, TroostD (2001) Immunohistochemical localization of group I and II metabotropic glutamate receptors in control and amyotrophic lateral sclerosis human spinal cord: upregulation in reactive astrocytes. Neuroscience105:509–520

DOI

5
BaechtoldH, KurodaM, SokJ, RonD, , LopezBS, AkhmedovAT (1999) Human 75-kDa DNA-pairing protein is identical to the prooncoprotein TLS/FUS and is able to promote D-loop formation. J Biol Chem274:34337–34342

DOI

6
BoscoDA, MorfiniG, KarabacakNM, SongY, Gros-LouisF, PasinelliP,GoolsbyH, FontaineBA, LemayN, McKenna-YasekD (2010) Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci13:1396–1403

DOI

7
BoultingGL, KiskinisE, CroftGF, AmorosoMW, OakleyDH, WaingerBJ, WilliamsDJ, KahlerDJ, YamakiM, DavidowL, RodolfaCT (2011) A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol29:279–286.

DOI

8
BruijnLI, HouseweartMK, KatoS, AndersonKL, AndersonSD, OhamaE, ReaumeAG, ScottRW, ClevelandDW (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science281:1851–1854

DOI

9
BruijnLI, MillerTM, ClevelandDW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci27:723–749

DOI

10
CasciI, PandeyUB (2015) A fruitful endeavor: modeling ALS in the fruit fly. Brain Res1607:47–74

DOI

11
ChenH, QianK, DuZ, CaoJ, PetersenA, LiuH, BlackbournLW, HuangCL, ErrigoA, YinY (2014) Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell14:796–809.

DOI

12
ChiL, GanL, LuoC, LuoC, LienL, LiuR (2007) Temporal response of neural progenitor cells to disease onset and progression in amyotrophic lateral sclerosis-like transgenic mice. Stem Cells Dev16:5579–5588

DOI

13
CirilloG, ColangeloAM, De LucaC, SavareseL, BarillariMR, AlberghinaL, PapaM (2016) Modulation of matrix metalloproteinases activity in the ventral horn of the spinal cord restores neuroglial synaptic homeostasis and neurotrophic support following peripheral nerve injury. PLoS ONE11:152750–152762

DOI

14
ConfortiL, AdalbertR, ColemanMP (2007) Neuronal death: where does the end begin? Trends Neurosci30:159–166

DOI

15
CortiS, NizzardoM, SimoneC, FalconeM, NardiniM, RonchiD, DonadoniC, SalaniS, RiboldiG, MagriF (2012) Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med4:165–197

DOI

16
CrozatA, AmanP, MandahlN, MandahlN, RonD (1993) Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature363:640–644

DOI

17
De LucaC, PapaMA (2016) Looking inside the matrix: perineuronal nets in plasticity, maladaptive plasticity and neurological disorders. Neurochem Res41:1507–1515

DOI

18
DingQ, ReganSN, XiaY, OostromLA, CowanCA, MusunuruK (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell12:393–394

DOI

19
DingZ, SuiL, RenR, LiuY, XuX, FuL, BaiR, YuanT, HaoY, ZhangW (2015) A widely adaptable approach to generate integration-free iPSCs from non-invasively acquired human somatic cells. Protein Cell6:386–389

DOI

20
DrepperC, HerrmannT, WessigC, BeckM, SendtnerM (2011) C-terminal FUS/TLS mutations in familial and sporadic ALS in Germany. Neurobiol Aging32:548–552

DOI

21
DuZW, ChenH, LiuH, LuJ, QianK, HuangCL, ZhongX, FanF, ZhangSC (2015) Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat Commun6:6626–6638

DOI

22
DuanS, YuanG, LiuX, RenR, LiJ, ZhangW, WuJ, XuX, FuL, LiY (2015) PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun6:10068–10082

DOI

23
EgawaN, KitaokaS, TsukitaK, NaitohM, TakahashiK, YamamotoT, AdachiF, KondoT, OkitaK, AsakaI, AoiT (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med4:145104–145112

DOI

24
FischerLR, CulverDG, TennantP, DavisAA, WangM, Castellano-SanchezA, KhanJ, PolakMA, GlassJD (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol185:232–240

DOI

25
FuL, XuX, RenR, WuJ, ZhangW, YangJ, RenX, WangS, ZhaoY, SunL (2016) Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs. Protein Cell7:210–221

DOI

26
HigelinJ, DemestreM, PutzS, DellingJP, JacobC, LutzAK, BausingerJ, HuberAK, KlingensteinM, BarbiG (2016) FUS mislocalization and vulnerability to DNA damage in ALS patients derived hiPSCs and aging motoneurons. Front Cell Neurosci10:290–311

DOI

27
HuangC, ZhouH, TongJ, ChenH, LiuYJ, WangD, WeiX, XiaXG (2011) FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PLoS Genet7:1–10

DOI

28
IchiyanagiN, FujimoriK, YanoM, Ishihara-FujisakiC, SoneT, AkiyamaT, OkadaY, AkamatsuW, MatsumotoT, IshikawaM (2016) Establishment of in vitro FUS-associated familial amyotrophic lateral sclerosis model using human induced pluripotent stem cells. Stem Cell Rep6:496–510

DOI

29
JulienJ-P, KrizJ (2006) Transgenic mouse models of amyotrophic lateral sclerosis. Biochim Biophys Acta (BBA)1762:1013–1024

DOI

30
KanningKC, KaplanA, HendersonCE (2010) Motor neuron diversity in development and disease. Annu Rev Neurosci33:409–440

DOI

31
KiskinisE, SandoeJ, WilliamsLA, BoultingGL, MocciaR, WaingerBJ, HanS, PengT, ThamsS, MikkilineniS (2014) Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell14:781–795

DOI

32
KubbenN, ZhangW, WangL, VossTC, YangJ, QuJ, LiuGH, MisteliT (2016) Repression of the antioxidant NRF2 pathway in premature aging. Cell165:1361–1374

DOI

33
KudoLC, ParfenovaL, ViN, LauK, PomakianJ, ValdmanisP, RouleauGA, VintersHV, Wiedau-PazosM, KarstenSL (2010) Integrative gene–tissue microarray-based approach for identification of human disease biomarkers: application to amyotrophic lateral sclerosis. Hum Mol Genet19:3233–3253

DOI

34
LaiSL, AbramzonY, SchymickJC, StephanDA, DunckleyT, DillmanA, CooksonM, CalvoA, BattistiniS, GianniniF (2011) FUS mutations in sporadic amyotrophic lateral sclerosis. Neurobiol Aging32:551–554

DOI

35
LattanteS, RouleauGA, KabashiE (2013) TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat34:812–826

DOI

36
LeeJC, JinY, JinJ, KangBG, NamDH, JooKM, ChaCI (2011) Functional neural stem cell isolation from brains of adult mutant SOD1 (SOD1(G93A)) transgenic amyotrophic lateral sclerosis (ALS) mice. Neurol Res33:33–37

DOI

37
LeeJH, KwonDH (2013) Calumenin has a role in the alleviation of ER stress in neonatal rat cardiomyocytes. Biochem Biophys Res Commun439:327–332

DOI

38
LeeS, ShangY, RedmondSA, UrismanA, TangAA, LiKH, BurlingameAL, PakRA, JovicicA, GitlerAD (2016) Activation of HIPK2 promotes ER stress-mediated neurodegeneration in amyotrophic lateral sclerosis. Neuron91:41–55

DOI

39
LenziJ, De SantisR, de TurrisV, MorlandoM, LaneveP, CalvoA, CaliendoV, ChioA, RosaA, BozzoniI (2015) ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Dis Model Mech8:755–766

DOI

40
LiY, BalasubramanianU, CohenD, ZhangP-W, MosmillerE, SattlerR, MaragakisNJ, RothsteinJD (2015) A comprehensive library of familial human amyotrophic lateral sclerosis induced pluripotent stem cells. PLOS ONE10:118266–118279

DOI

41
LiY, ZhangW, ChangL, HanY, SunL, GongX, TangH, LiuZ, DengH, YeY (2016) Vitamin C alleviates aging defects in a stem cell model for Werner syndrome. Protein Cell7:478–488

DOI

42
LiangP, XuY, ZhangX, DingC, HuangR, ZhangZ, LvJ, XieX, ChenY, LiY (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell6:363–372

DOI

43
LiuG-H, DingZ, Izpisua BelmonteJC (2012a) iPSC technology to study human aging and aging-related disorders. Curr Opin Cell Biol24:765–774

DOI

44
LiuGH, BarkhoBZ, RuizS, DiepD, QuJ, YangS-L, PanopoulosAD, SuzukiK, KurianL, WalshC, ThompsonJ (2011a) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature472: 221–225

DOI

45
LiuGH, QuJ, SuzukiK, NivetE, LiM, MontserratN, YiF, XuX, RuizS, ZhangW (2012b) Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature491:603–607

DOI

46
LiuGH, SuzukiK, LiM, QuJ, MontserratN, TarantinoC, GuY, YiF, XuX, ZhangW (2014) Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun5:4330–4347

DOI

47
LiuGH, SuzukiK, QuJ, Sancho-MartinezI, YiF, LiM, KumarS, NivetE, KimJ, SoligallaRD (2011b) Targeted gene correction of laminopathy-associated LMNA mutations in patientspecific iPSCs. Cell Stem Cell8:688–694

DOI

48
LiuX, ChenJ, LiuW, LiX, ChenQ, LiuT, GaoS, DengM (2015) The fused in sarcoma protein forms cytoplasmic aggregates in motor neurons derived from integration-free induced pluripotent stem cells generated from a patient with familial amyotrophic lateral sclerosis carrying the FUS-P525L mutation. Neurogenetics16:223–231

DOI

49
MaliP, YangL, EsveltKM, AachJ, GuellM, DiCarloJE, NorvilleJE, ChurchGM (2013). RNA-guided human genome engineering via Cas9. Science339:823–826

DOI

50
MauryY, ComeJ, PiskorowskiRA, Salah-MohellibiN, ChevaleyreV, PeschanskiM, MartinatC, NedelecS (2015) Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat Biotechnol33:89–96

DOI

51
NagaiM, ReDB, NagataT, ChalazonitisA, JessellTM, WichterleH, PrzedborskiS (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci10:615–622

DOI

52
OkitaK, MatsumuraY, SatoY, OkadaA, MorizaneA, OkamotoS, HongH, NakagawaM, TanabeK, TezukaK (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods8:409–412

DOI

53
PanH, GuanD, LiuX, LiJ, WangL, WuJ, ZhouJ, ZhangW, RenR, ZhangW (2016) SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Research26:190–205

DOI

54
PasinelliP, BrownRH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci7:710–723

DOI

55
PetersDT, CowanCA, MusunuruK (2013) Genome editing in human pluripotent stem cells. StemBook.

56
QuQ, LiD, LouisKR, LiX, YangH, SunQ, CrandallSR, TsangS, ZhouJ, CoxCL (2014) High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of Islet-1. Nat Commun5:3449–3462

DOI

57
RenR, DengL, XueY, SuzukiK, ZhangW, YuY, WuJ, SunL, GongX, LuanH (2017) Visualization of aging-associated chromatin alterations with an engineered TALE system

DOI

58
RobberechtW, PhilipsT (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci14:248–264

DOI

59
RosenDR, SiddiqueT, PattersonD, FiglewiczDA, SappP, HentatiA, DonaldsonD, GotoJ, O’ReganJP, DengH-X (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature362:59–62

DOI

60
SharmaA, LyashchenkoAK, LuL, NasrabadySE, ElmalehM, MendelsohnM, NemesA, TapiaJC, MentisGZ, ShneiderNA (2016) ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun7:10465–10479

DOI

61
SolemanS, FilippovMA, DityatevA, FawcettJW (2013) Targeting the neural extracellular matrix in neurological disorders. Neuroscience253:194–213

DOI

62
SuzukiK, TsunekawaY, Hernandez-BenitezR, WuJ, ZhuJ, KimEJ, HatanakaF, YamamotoM, AraokaT, LiZ (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature540:144–149

DOI

63
SuzukiK, YuC, QuJ, LiM, YaoX, YuanT, GoeblA, TangS, RenR, AizawaE (2014) Targeted gene correction minimally impacts whole-genome mutational load in human-diseasespecific induced pluripotent stem cell clones. Cell Stem Cell15:31–36

DOI

64
TakahashiK, TanabeK, OhnukiM, NaritaM, IchisakaT, TomodaK, YamanakaS (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131:861–872

DOI

65
TrapnellC, PachterL, SalzbergSL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics25:1105–1111

DOI

66
TurnerBJ, TalbotK (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol85:94–134

DOI

67
VanceC, RogeljB, HortobágyiT, De VosKJ, NishimuraAL, SreedharanJ, HuX, SmithB, RuddyD, WrightP (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science323:1208–1211

DOI

68
VeresA, GosisBS, DingQ, CollinsR, RagavendranA, BrandH, ErdinS, TalkowskiME, MusunuruK (2014) Low incidence of offtarget mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell15:27–30

DOI

69
Wainger BrianJ, KiskinisE, MellinC, WiskowO, Han SteveSW, SandoeJ, Perez NumaP, Williams LuisA, LeeS, BoultingG (2014) Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Reports7:1–11

DOI

70
WoehlbierU, ColomboA, SaaranenMJ, PerezV, OjedaJ, BustosFJ, AndreuCI, TorresM, ValenzuelaV, MedinasDB (2016) ALS-linked protein disulfide isomerase variants cause motor dysfunction. EMBO J35:845–865

DOI

71
Yang YinM, Gupta ShaileshK, Kim KevinJ, Powers BeritE, CerqueiraA, Wainger BrianJ, Ngo HienD, Rosowski KathrynA, Schein PamelaA, Ackeifi CourtneyA (2013) A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell12:713–726

DOI

72
ZhangW, LiJ, SuzukiK, QuJ, WangP, ZhouJ, LiuX, RenR, XuX, OcampoA (2015) A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science348:1160–1163

DOI

73
ZhuY, FotinosA, MaoLL, AtassiN, ZhouEW, AhmadS, GuanY, BerryJD, CudkowiczME, WangX (2014) Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov Today20:65–75

DOI

74
ZhuY, FotinosA, MaoLL, AtassiN, ZhouEW, AhmadS, GuanY, BerryJD, CudkowiczME, WangX (2015) Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov Today20:65–75

DOI

Outlines

/