CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs
Received date: 22 Dec 2016
Accepted date: 06 Mar 2017
Published date: 12 Jun 2017
Copyright
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts of familial ALS patients bearing SOD1+/A272C and FUS+/G1566A mutations, respectively. We further generated gene corrected ALS iPSCs using CRISPR/Cas9 system. Genome-wide RNA sequencing (RNA-seq) analysis ofmotor neurons derived from SOD1+/A272C and corrected iPSCs revealed 899 aberrant transcripts. Our work may shed light on discovery of early biomarkers and pathways dysregulated in ALS, as well as provide a basis for novel therapeutic strategies to treat ALS.
Key words: ALS; CRISPR/Cas9; gene correction; iPSC disease modeling
Lixia Wang , Fei Yi , Lina Fu , Jiping Yang , Si Wang , Zhaoxia Wang , Keiichiro Suzuki , Liang Sun , Xiuling Xu , Yang Yu , Jie Qiao , Juan Carlos Izpisua Belmonte , Ze Yang , Yun Yuan , Jing Qu , Guang-Hui Liu . CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs[J]. Protein & Cell, 2017 , 8(5) : 365 -378 . DOI: 10.1007/s13238-017-0397-3
1 |
Al-ChalabiA, HardimanO (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol9:617–623
|
2 |
AlexianuME, HoBK, MohamedAH, La BellaV, SmithRG, AppelSH (1994) The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol36:846–858
|
3 |
AndersS, HuberW (2010) Differential expression analysis for sequence count data. Genome Biol11:1–12
|
4 |
AronicaE, CataniaMV, GeurtsJ, YankayaB, TroostD (2001) Immunohistochemical localization of group I and II metabotropic glutamate receptors in control and amyotrophic lateral sclerosis human spinal cord: upregulation in reactive astrocytes. Neuroscience105:509–520
|
5 |
BaechtoldH, KurodaM, SokJ, RonD, , LopezBS, AkhmedovAT (1999) Human 75-kDa DNA-pairing protein is identical to the prooncoprotein TLS/FUS and is able to promote D-loop formation. J Biol Chem274:34337–34342
|
6 |
BoscoDA, MorfiniG, KarabacakNM, SongY, Gros-LouisF, PasinelliP,GoolsbyH, FontaineBA, LemayN, McKenna-YasekD
|
7 |
BoultingGL, KiskinisE, CroftGF, AmorosoMW, OakleyDH, WaingerBJ, WilliamsDJ, KahlerDJ, YamakiM, DavidowL, RodolfaCT
|
8 |
BruijnLI, HouseweartMK, KatoS, AndersonKL, AndersonSD, OhamaE, ReaumeAG, ScottRW, ClevelandDW (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science281:1851–1854
|
9 |
BruijnLI, MillerTM, ClevelandDW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci27:723–749
|
10 |
CasciI, PandeyUB (2015) A fruitful endeavor: modeling ALS in the fruit fly. Brain Res1607:47–74
|
11 |
ChenH, QianK, DuZ, CaoJ, PetersenA, LiuH, BlackbournLW, HuangCL, ErrigoA, YinY
|
12 |
ChiL, GanL, LuoC, LuoC, LienL, LiuR (2007) Temporal response of neural progenitor cells to disease onset and progression in amyotrophic lateral sclerosis-like transgenic mice. Stem Cells Dev16:5579–5588
|
13 |
CirilloG, ColangeloAM, De LucaC, SavareseL, BarillariMR, AlberghinaL, PapaM (2016) Modulation of matrix metalloproteinases activity in the ventral horn of the spinal cord restores neuroglial synaptic homeostasis and neurotrophic support following peripheral nerve injury. PLoS ONE11:152750–152762
|
14 |
ConfortiL, AdalbertR, ColemanMP (2007) Neuronal death: where does the end begin? Trends Neurosci30:159–166
|
15 |
CortiS, NizzardoM, SimoneC, FalconeM, NardiniM, RonchiD, DonadoniC, SalaniS, RiboldiG, MagriF
|
16 |
CrozatA, AmanP, MandahlN, MandahlN, RonD (1993) Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature363:640–644
|
17 |
De LucaC, PapaMA (2016) Looking inside the matrix: perineuronal nets in plasticity, maladaptive plasticity and neurological disorders. Neurochem Res41:1507–1515
|
18 |
DingQ, ReganSN, XiaY, OostromLA, CowanCA, MusunuruK (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell12:393–394
|
19 |
DingZ, SuiL, RenR, LiuY, XuX, FuL, BaiR, YuanT, HaoY, ZhangW
|
20 |
DrepperC, HerrmannT, WessigC, BeckM, SendtnerM (2011) C-terminal FUS/TLS mutations in familial and sporadic ALS in Germany. Neurobiol Aging32:548–552
|
21 |
DuZW, ChenH, LiuH, LuJ, QianK, HuangCL, ZhongX, FanF, ZhangSC (2015) Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat Commun6:6626–6638
|
22 |
DuanS, YuanG, LiuX, RenR, LiJ, ZhangW, WuJ, XuX, FuL, LiY
|
23 |
EgawaN, KitaokaS, TsukitaK, NaitohM, TakahashiK, YamamotoT, AdachiF, KondoT, OkitaK, AsakaI, AoiT
|
24 |
FischerLR, CulverDG, TennantP, DavisAA, WangM, Castellano-SanchezA, KhanJ, PolakMA, GlassJD (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol185:232–240
|
25 |
FuL, XuX, RenR, WuJ, ZhangW, YangJ, RenX, WangS, ZhaoY, SunL
|
26 |
HigelinJ, DemestreM, PutzS, DellingJP, JacobC, LutzAK, BausingerJ, HuberAK, KlingensteinM, BarbiG
|
27 |
HuangC, ZhouH, TongJ, ChenH, LiuYJ, WangD, WeiX, XiaXG (2011) FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PLoS Genet7:1–10
|
28 |
IchiyanagiN, FujimoriK, YanoM, Ishihara-FujisakiC, SoneT, AkiyamaT, OkadaY, AkamatsuW, MatsumotoT, IshikawaM
|
29 |
JulienJ-P, KrizJ (2006) Transgenic mouse models of amyotrophic lateral sclerosis. Biochim Biophys Acta (BBA)1762:1013–1024
|
30 |
KanningKC, KaplanA, HendersonCE (2010) Motor neuron diversity in development and disease. Annu Rev Neurosci33:409–440
|
31 |
KiskinisE, SandoeJ, WilliamsLA, BoultingGL, MocciaR, WaingerBJ, HanS, PengT, ThamsS, MikkilineniS
|
32 |
KubbenN, ZhangW, WangL, VossTC, YangJ, QuJ, LiuGH, MisteliT (2016) Repression of the antioxidant NRF2 pathway in premature aging. Cell165:1361–1374
|
33 |
KudoLC, ParfenovaL, ViN, LauK, PomakianJ, ValdmanisP, RouleauGA, VintersHV, Wiedau-PazosM, KarstenSL (2010) Integrative gene–tissue microarray-based approach for identification of human disease biomarkers: application to amyotrophic lateral sclerosis. Hum Mol Genet19:3233–3253
|
34 |
LaiSL, AbramzonY, SchymickJC, StephanDA, DunckleyT, DillmanA, CooksonM, CalvoA, BattistiniS, GianniniF
|
35 |
LattanteS, RouleauGA, KabashiE (2013) TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat34:812–826
|
36 |
LeeJC, JinY, JinJ, KangBG, NamDH, JooKM, ChaCI (2011) Functional neural stem cell isolation from brains of adult mutant SOD1 (SOD1(G93A)) transgenic amyotrophic lateral sclerosis (ALS) mice. Neurol Res33:33–37
|
37 |
LeeJH, KwonDH (2013) Calumenin has a role in the alleviation of ER stress in neonatal rat cardiomyocytes. Biochem Biophys Res Commun439:327–332
|
38 |
LeeS, ShangY, RedmondSA, UrismanA, TangAA, LiKH, BurlingameAL, PakRA, JovicicA, GitlerAD
|
39 |
LenziJ, De SantisR, de TurrisV, MorlandoM, LaneveP, CalvoA, CaliendoV, ChioA, RosaA, BozzoniI (2015) ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Dis Model Mech8:755–766
|
40 |
LiY, BalasubramanianU, CohenD, ZhangP-W, MosmillerE, SattlerR, MaragakisNJ, RothsteinJD (2015) A comprehensive library of familial human amyotrophic lateral sclerosis induced pluripotent stem cells. PLOS ONE10:118266–118279
|
41 |
LiY, ZhangW, ChangL, HanY, SunL, GongX, TangH, LiuZ, DengH, YeY
|
42 |
LiangP, XuY, ZhangX, DingC, HuangR, ZhangZ, LvJ, XieX, ChenY, LiY
|
43 |
LiuG-H, DingZ, Izpisua BelmonteJC (2012a) iPSC technology to study human aging and aging-related disorders. Curr Opin Cell Biol24:765–774
|
44 |
LiuGH, BarkhoBZ, RuizS, DiepD, QuJ, YangS-L, PanopoulosAD, SuzukiK, KurianL, WalshC, ThompsonJ
|
45 |
LiuGH, QuJ, SuzukiK, NivetE, LiM, MontserratN, YiF, XuX, RuizS, ZhangW
|
46 |
LiuGH, SuzukiK, LiM, QuJ, MontserratN, TarantinoC, GuY, YiF, XuX, ZhangW
|
47 |
LiuGH, SuzukiK, QuJ, Sancho-MartinezI, YiF, LiM, KumarS, NivetE, KimJ, SoligallaRD
|
48 |
LiuX, ChenJ, LiuW, LiX, ChenQ, LiuT, GaoS, DengM (2015) The fused in sarcoma protein forms cytoplasmic aggregates in motor neurons derived from integration-free induced pluripotent stem cells generated from a patient with familial amyotrophic lateral sclerosis carrying the FUS-P525L mutation. Neurogenetics16:223–231
|
49 |
MaliP, YangL, EsveltKM, AachJ, GuellM, DiCarloJE, NorvilleJE, ChurchGM (2013). RNA-guided human genome engineering via Cas9. Science339:823–826
|
50 |
MauryY, ComeJ, PiskorowskiRA, Salah-MohellibiN, ChevaleyreV, PeschanskiM, MartinatC, NedelecS (2015) Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat Biotechnol33:89–96
|
51 |
NagaiM, ReDB, NagataT, ChalazonitisA, JessellTM, WichterleH, PrzedborskiS (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci10:615–622
|
52 |
OkitaK, MatsumuraY, SatoY, OkadaA, MorizaneA, OkamotoS, HongH, NakagawaM, TanabeK, TezukaK
|
53 |
PanH, GuanD, LiuX, LiJ, WangL, WuJ, ZhouJ, ZhangW, RenR, ZhangW
|
54 |
PasinelliP, BrownRH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci7:710–723
|
55 |
PetersDT, CowanCA, MusunuruK (2013) Genome editing in human pluripotent stem cells. StemBook.
|
56 |
QuQ, LiD, LouisKR, LiX, YangH, SunQ, CrandallSR, TsangS, ZhouJ, CoxCL
|
57 |
RenR, DengL, XueY, SuzukiK, ZhangW, YuY, WuJ, SunL, GongX, LuanH
|
58 |
RobberechtW, PhilipsT (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci14:248–264
|
59 |
RosenDR, SiddiqueT, PattersonD, FiglewiczDA, SappP, HentatiA, DonaldsonD, GotoJ, O’ReganJP, DengH-X
|
60 |
SharmaA, LyashchenkoAK, LuL, NasrabadySE, ElmalehM, MendelsohnM, NemesA, TapiaJC, MentisGZ, ShneiderNA (2016) ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun7:10465–10479
|
61 |
SolemanS, FilippovMA, DityatevA, FawcettJW (2013) Targeting the neural extracellular matrix in neurological disorders. Neuroscience253:194–213
|
62 |
SuzukiK, TsunekawaY, Hernandez-BenitezR, WuJ, ZhuJ, KimEJ, HatanakaF, YamamotoM, AraokaT, LiZ
|
63 |
SuzukiK, YuC, QuJ, LiM, YaoX, YuanT, GoeblA, TangS, RenR, AizawaE
|
64 |
TakahashiK, TanabeK, OhnukiM, NaritaM, IchisakaT, TomodaK, YamanakaS (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131:861–872
|
65 |
TrapnellC, PachterL, SalzbergSL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics25:1105–1111
|
66 |
TurnerBJ, TalbotK (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol85:94–134
|
67 |
VanceC, RogeljB, HortobágyiT, De VosKJ, NishimuraAL, SreedharanJ, HuX, SmithB, RuddyD, WrightP
|
68 |
VeresA, GosisBS, DingQ, CollinsR, RagavendranA, BrandH, ErdinS, TalkowskiME, MusunuruK (2014) Low incidence of offtarget mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell15:27–30
|
69 |
Wainger BrianJ, KiskinisE, MellinC, WiskowO, Han SteveSW, SandoeJ, Perez NumaP, Williams LuisA, LeeS, BoultingG
|
70 |
WoehlbierU, ColomboA, SaaranenMJ, PerezV, OjedaJ, BustosFJ, AndreuCI, TorresM, ValenzuelaV, MedinasDB
|
71 |
Yang YinM, Gupta ShaileshK, Kim KevinJ, Powers BeritE, CerqueiraA, Wainger BrianJ, Ngo HienD, Rosowski KathrynA, Schein PamelaA, Ackeifi CourtneyA
|
72 |
ZhangW, LiJ, SuzukiK, QuJ, WangP, ZhouJ, LiuX, RenR, XuX, OcampoA
|
73 |
ZhuY, FotinosA, MaoLL, AtassiN, ZhouEW, AhmadS, GuanY, BerryJD, CudkowiczME, WangX (2014) Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov Today20:65–75
|
74 |
ZhuY, FotinosA, MaoLL, AtassiN, ZhouEW, AhmadS, GuanY, BerryJD, CudkowiczME, WangX (2015) Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov Today20:65–75
|
/
〈 | 〉 |