CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs

Lixia Wang, Fei Yi, Lina Fu, Jiping Yang, Si Wang, Zhaoxia Wang, Keiichiro Suzuki, Liang Sun, Xiuling Xu, Yang Yu, Jie Qiao, Juan Carlos Izpisua Belmonte, Ze Yang, Yun Yuan, Jing Qu, Guang-Hui Liu

PDF(5762 KB)
PDF(5762 KB)
Protein Cell ›› 2017, Vol. 8 ›› Issue (5) : 365-378. DOI: 10.1007/s13238-017-0397-3
RESEARCH ARTICLE
RESEARCH ARTICLE

CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs

Author information +
History +

Abstract

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts of familial ALS patients bearing SOD1+/A272C and FUS+/G1566A mutations, respectively. We further generated gene corrected ALS iPSCs using CRISPR/Cas9 system. Genome-wide RNA sequencing (RNA-seq) analysis ofmotor neurons derived from SOD1+/A272C and corrected iPSCs revealed 899 aberrant transcripts. Our work may shed light on discovery of early biomarkers and pathways dysregulated in ALS, as well as provide a basis for novel therapeutic strategies to treat ALS.

Keywords

ALS / CRISPR/Cas9 / gene correction / iPSC disease modeling

Cite this article

Download citation ▾
Lixia Wang, Fei Yi, Lina Fu, Jiping Yang, Si Wang, Zhaoxia Wang, Keiichiro Suzuki, Liang Sun, Xiuling Xu, Yang Yu, Jie Qiao, Juan Carlos Izpisua Belmonte, Ze Yang, Yun Yuan, Jing Qu, Guang-Hui Liu. CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell, 2017, 8(5): 365‒378 https://doi.org/10.1007/s13238-017-0397-3

References

[1]
Al-ChalabiA, HardimanO (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol9:617–623
CrossRef Google scholar
[2]
AlexianuME, HoBK, MohamedAH, La BellaV, SmithRG, AppelSH (1994) The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol36:846–858
CrossRef Google scholar
[3]
AndersS, HuberW (2010) Differential expression analysis for sequence count data. Genome Biol11:1–12
CrossRef Google scholar
[4]
AronicaE, CataniaMV, GeurtsJ, YankayaB, TroostD (2001) Immunohistochemical localization of group I and II metabotropic glutamate receptors in control and amyotrophic lateral sclerosis human spinal cord: upregulation in reactive astrocytes. Neuroscience105:509–520
CrossRef Google scholar
[5]
BaechtoldH, KurodaM, SokJ, RonD, , LopezBS, AkhmedovAT (1999) Human 75-kDa DNA-pairing protein is identical to the prooncoprotein TLS/FUS and is able to promote D-loop formation. J Biol Chem274:34337–34342
CrossRef Google scholar
[6]
BoscoDA, MorfiniG, KarabacakNM, SongY, Gros-LouisF, PasinelliP,GoolsbyH, FontaineBA, LemayN, McKenna-YasekD (2010) Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci13:1396–1403
CrossRef Google scholar
[7]
BoultingGL, KiskinisE, CroftGF, AmorosoMW, OakleyDH, WaingerBJ, WilliamsDJ, KahlerDJ, YamakiM, DavidowL, RodolfaCT (2011) A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol29:279–286.
CrossRef Google scholar
[8]
BruijnLI, HouseweartMK, KatoS, AndersonKL, AndersonSD, OhamaE, ReaumeAG, ScottRW, ClevelandDW (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science281:1851–1854
CrossRef Google scholar
[9]
BruijnLI, MillerTM, ClevelandDW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci27:723–749
CrossRef Google scholar
[10]
CasciI, PandeyUB (2015) A fruitful endeavor: modeling ALS in the fruit fly. Brain Res1607:47–74
CrossRef Google scholar
[11]
ChenH, QianK, DuZ, CaoJ, PetersenA, LiuH, BlackbournLW, HuangCL, ErrigoA, YinY (2014) Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell14:796–809.
CrossRef Google scholar
[12]
ChiL, GanL, LuoC, LuoC, LienL, LiuR (2007) Temporal response of neural progenitor cells to disease onset and progression in amyotrophic lateral sclerosis-like transgenic mice. Stem Cells Dev16:5579–5588
CrossRef Google scholar
[13]
CirilloG, ColangeloAM, De LucaC, SavareseL, BarillariMR, AlberghinaL, PapaM (2016) Modulation of matrix metalloproteinases activity in the ventral horn of the spinal cord restores neuroglial synaptic homeostasis and neurotrophic support following peripheral nerve injury. PLoS ONE11:152750–152762
CrossRef Google scholar
[14]
ConfortiL, AdalbertR, ColemanMP (2007) Neuronal death: where does the end begin? Trends Neurosci30:159–166
CrossRef Google scholar
[15]
CortiS, NizzardoM, SimoneC, FalconeM, NardiniM, RonchiD, DonadoniC, SalaniS, RiboldiG, MagriF (2012) Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med4:165–197
CrossRef Google scholar
[16]
CrozatA, AmanP, MandahlN, MandahlN, RonD (1993) Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature363:640–644
CrossRef Google scholar
[17]
De LucaC, PapaMA (2016) Looking inside the matrix: perineuronal nets in plasticity, maladaptive plasticity and neurological disorders. Neurochem Res41:1507–1515
CrossRef Google scholar
[18]
DingQ, ReganSN, XiaY, OostromLA, CowanCA, MusunuruK (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell12:393–394
CrossRef Google scholar
[19]
DingZ, SuiL, RenR, LiuY, XuX, FuL, BaiR, YuanT, HaoY, ZhangW (2015) A widely adaptable approach to generate integration-free iPSCs from non-invasively acquired human somatic cells. Protein Cell6:386–389
CrossRef Google scholar
[20]
DrepperC, HerrmannT, WessigC, BeckM, SendtnerM (2011) C-terminal FUS/TLS mutations in familial and sporadic ALS in Germany. Neurobiol Aging32:548–552
CrossRef Google scholar
[21]
DuZW, ChenH, LiuH, LuJ, QianK, HuangCL, ZhongX, FanF, ZhangSC (2015) Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat Commun6:6626–6638
CrossRef Google scholar
[22]
DuanS, YuanG, LiuX, RenR, LiJ, ZhangW, WuJ, XuX, FuL, LiY (2015) PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun6:10068–10082
CrossRef Google scholar
[23]
EgawaN, KitaokaS, TsukitaK, NaitohM, TakahashiK, YamamotoT, AdachiF, KondoT, OkitaK, AsakaI, AoiT (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med4:145104–145112
CrossRef Google scholar
[24]
FischerLR, CulverDG, TennantP, DavisAA, WangM, Castellano-SanchezA, KhanJ, PolakMA, GlassJD (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol185:232–240
CrossRef Google scholar
[25]
FuL, XuX, RenR, WuJ, ZhangW, YangJ, RenX, WangS, ZhaoY, SunL (2016) Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs. Protein Cell7:210–221
CrossRef Google scholar
[26]
HigelinJ, DemestreM, PutzS, DellingJP, JacobC, LutzAK, BausingerJ, HuberAK, KlingensteinM, BarbiG (2016) FUS mislocalization and vulnerability to DNA damage in ALS patients derived hiPSCs and aging motoneurons. Front Cell Neurosci10:290–311
CrossRef Google scholar
[27]
HuangC, ZhouH, TongJ, ChenH, LiuYJ, WangD, WeiX, XiaXG (2011) FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PLoS Genet7:1–10
CrossRef Google scholar
[28]
IchiyanagiN, FujimoriK, YanoM, Ishihara-FujisakiC, SoneT, AkiyamaT, OkadaY, AkamatsuW, MatsumotoT, IshikawaM (2016) Establishment of in vitro FUS-associated familial amyotrophic lateral sclerosis model using human induced pluripotent stem cells. Stem Cell Rep6:496–510
CrossRef Google scholar
[29]
JulienJ-P, KrizJ (2006) Transgenic mouse models of amyotrophic lateral sclerosis. Biochim Biophys Acta (BBA)1762:1013–1024
CrossRef Google scholar
[30]
KanningKC, KaplanA, HendersonCE (2010) Motor neuron diversity in development and disease. Annu Rev Neurosci33:409–440
CrossRef Google scholar
[31]
KiskinisE, SandoeJ, WilliamsLA, BoultingGL, MocciaR, WaingerBJ, HanS, PengT, ThamsS, MikkilineniS (2014) Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell14:781–795
CrossRef Google scholar
[32]
KubbenN, ZhangW, WangL, VossTC, YangJ, QuJ, LiuGH, MisteliT (2016) Repression of the antioxidant NRF2 pathway in premature aging. Cell165:1361–1374
CrossRef Google scholar
[33]
KudoLC, ParfenovaL, ViN, LauK, PomakianJ, ValdmanisP, RouleauGA, VintersHV, Wiedau-PazosM, KarstenSL (2010) Integrative gene–tissue microarray-based approach for identification of human disease biomarkers: application to amyotrophic lateral sclerosis. Hum Mol Genet19:3233–3253
CrossRef Google scholar
[34]
LaiSL, AbramzonY, SchymickJC, StephanDA, DunckleyT, DillmanA, CooksonM, CalvoA, BattistiniS, GianniniF (2011) FUS mutations in sporadic amyotrophic lateral sclerosis. Neurobiol Aging32:551–554
CrossRef Google scholar
[35]
LattanteS, RouleauGA, KabashiE (2013) TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat34:812–826
CrossRef Google scholar
[36]
LeeJC, JinY, JinJ, KangBG, NamDH, JooKM, ChaCI (2011) Functional neural stem cell isolation from brains of adult mutant SOD1 (SOD1(G93A)) transgenic amyotrophic lateral sclerosis (ALS) mice. Neurol Res33:33–37
CrossRef Google scholar
[37]
LeeJH, KwonDH (2013) Calumenin has a role in the alleviation of ER stress in neonatal rat cardiomyocytes. Biochem Biophys Res Commun439:327–332
CrossRef Google scholar
[38]
LeeS, ShangY, RedmondSA, UrismanA, TangAA, LiKH, BurlingameAL, PakRA, JovicicA, GitlerAD (2016) Activation of HIPK2 promotes ER stress-mediated neurodegeneration in amyotrophic lateral sclerosis. Neuron91:41–55
CrossRef Google scholar
[39]
LenziJ, De SantisR, de TurrisV, MorlandoM, LaneveP, CalvoA, CaliendoV, ChioA, RosaA, BozzoniI (2015) ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Dis Model Mech8:755–766
CrossRef Google scholar
[40]
LiY, BalasubramanianU, CohenD, ZhangP-W, MosmillerE, SattlerR, MaragakisNJ, RothsteinJD (2015) A comprehensive library of familial human amyotrophic lateral sclerosis induced pluripotent stem cells. PLOS ONE10:118266–118279
CrossRef Google scholar
[41]
LiY, ZhangW, ChangL, HanY, SunL, GongX, TangH, LiuZ, DengH, YeY (2016) Vitamin C alleviates aging defects in a stem cell model for Werner syndrome. Protein Cell7:478–488
CrossRef Google scholar
[42]
LiangP, XuY, ZhangX, DingC, HuangR, ZhangZ, LvJ, XieX, ChenY, LiY (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell6:363–372
CrossRef Google scholar
[43]
LiuG-H, DingZ, Izpisua BelmonteJC (2012a) iPSC technology to study human aging and aging-related disorders. Curr Opin Cell Biol24:765–774
CrossRef Google scholar
[44]
LiuGH, BarkhoBZ, RuizS, DiepD, QuJ, YangS-L, PanopoulosAD, SuzukiK, KurianL, WalshC, ThompsonJ (2011a) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature472: 221–225
CrossRef Google scholar
[45]
LiuGH, QuJ, SuzukiK, NivetE, LiM, MontserratN, YiF, XuX, RuizS, ZhangW (2012b) Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature491:603–607
CrossRef Google scholar
[46]
LiuGH, SuzukiK, LiM, QuJ, MontserratN, TarantinoC, GuY, YiF, XuX, ZhangW (2014) Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun5:4330–4347
CrossRef Google scholar
[47]
LiuGH, SuzukiK, QuJ, Sancho-MartinezI, YiF, LiM, KumarS, NivetE, KimJ, SoligallaRD (2011b) Targeted gene correction of laminopathy-associated LMNA mutations in patientspecific iPSCs. Cell Stem Cell8:688–694
CrossRef Google scholar
[48]
LiuX, ChenJ, LiuW, LiX, ChenQ, LiuT, GaoS, DengM (2015) The fused in sarcoma protein forms cytoplasmic aggregates in motor neurons derived from integration-free induced pluripotent stem cells generated from a patient with familial amyotrophic lateral sclerosis carrying the FUS-P525L mutation. Neurogenetics16:223–231
CrossRef Google scholar
[49]
MaliP, YangL, EsveltKM, AachJ, GuellM, DiCarloJE, NorvilleJE, ChurchGM (2013). RNA-guided human genome engineering via Cas9. Science339:823–826
CrossRef Google scholar
[50]
MauryY, ComeJ, PiskorowskiRA, Salah-MohellibiN, ChevaleyreV, PeschanskiM, MartinatC, NedelecS (2015) Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat Biotechnol33:89–96
CrossRef Google scholar
[51]
NagaiM, ReDB, NagataT, ChalazonitisA, JessellTM, WichterleH, PrzedborskiS (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci10:615–622
CrossRef Google scholar
[52]
OkitaK, MatsumuraY, SatoY, OkadaA, MorizaneA, OkamotoS, HongH, NakagawaM, TanabeK, TezukaK (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods8:409–412
CrossRef Google scholar
[53]
PanH, GuanD, LiuX, LiJ, WangL, WuJ, ZhouJ, ZhangW, RenR, ZhangW (2016) SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Research26:190–205
CrossRef Google scholar
[54]
PasinelliP, BrownRH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci7:710–723
CrossRef Google scholar
[55]
PetersDT, CowanCA, MusunuruK (2013) Genome editing in human pluripotent stem cells. StemBook.
[56]
QuQ, LiD, LouisKR, LiX, YangH, SunQ, CrandallSR, TsangS, ZhouJ, CoxCL (2014) High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of Islet-1. Nat Commun5:3449–3462
CrossRef Google scholar
[57]
RenR, DengL, XueY, SuzukiK, ZhangW, YuY, WuJ, SunL, GongX, LuanH (2017) Visualization of aging-associated chromatin alterations with an engineered TALE system
CrossRef Google scholar
[58]
RobberechtW, PhilipsT (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci14:248–264
CrossRef Google scholar
[59]
RosenDR, SiddiqueT, PattersonD, FiglewiczDA, SappP, HentatiA, DonaldsonD, GotoJ, O’ReganJP, DengH-X (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature362:59–62
CrossRef Google scholar
[60]
SharmaA, LyashchenkoAK, LuL, NasrabadySE, ElmalehM, MendelsohnM, NemesA, TapiaJC, MentisGZ, ShneiderNA (2016) ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun7:10465–10479
CrossRef Google scholar
[61]
SolemanS, FilippovMA, DityatevA, FawcettJW (2013) Targeting the neural extracellular matrix in neurological disorders. Neuroscience253:194–213
CrossRef Google scholar
[62]
SuzukiK, TsunekawaY, Hernandez-BenitezR, WuJ, ZhuJ, KimEJ, HatanakaF, YamamotoM, AraokaT, LiZ (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature540:144–149
CrossRef Google scholar
[63]
SuzukiK, YuC, QuJ, LiM, YaoX, YuanT, GoeblA, TangS, RenR, AizawaE (2014) Targeted gene correction minimally impacts whole-genome mutational load in human-diseasespecific induced pluripotent stem cell clones. Cell Stem Cell15:31–36
CrossRef Google scholar
[64]
TakahashiK, TanabeK, OhnukiM, NaritaM, IchisakaT, TomodaK, YamanakaS (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131:861–872
CrossRef Google scholar
[65]
TrapnellC, PachterL, SalzbergSL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics25:1105–1111
CrossRef Google scholar
[66]
TurnerBJ, TalbotK (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol85:94–134
CrossRef Google scholar
[67]
VanceC, RogeljB, HortobágyiT, De VosKJ, NishimuraAL, SreedharanJ, HuX, SmithB, RuddyD, WrightP (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science323:1208–1211
CrossRef Google scholar
[68]
VeresA, GosisBS, DingQ, CollinsR, RagavendranA, BrandH, ErdinS, TalkowskiME, MusunuruK (2014) Low incidence of offtarget mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell15:27–30
CrossRef Google scholar
[69]
Wainger BrianJ, KiskinisE, MellinC, WiskowO, Han SteveSW, SandoeJ, Perez NumaP, Williams LuisA, LeeS, BoultingG (2014) Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Reports7:1–11
CrossRef Google scholar
[70]
WoehlbierU, ColomboA, SaaranenMJ, PerezV, OjedaJ, BustosFJ, AndreuCI, TorresM, ValenzuelaV, MedinasDB (2016) ALS-linked protein disulfide isomerase variants cause motor dysfunction. EMBO J35:845–865
CrossRef Google scholar
[71]
Yang YinM, Gupta ShaileshK, Kim KevinJ, Powers BeritE, CerqueiraA, Wainger BrianJ, Ngo HienD, Rosowski KathrynA, Schein PamelaA, Ackeifi CourtneyA (2013) A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell12:713–726
CrossRef Google scholar
[72]
ZhangW, LiJ, SuzukiK, QuJ, WangP, ZhouJ, LiuX, RenR, XuX, OcampoA (2015) A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science348:1160–1163
CrossRef Google scholar
[73]
ZhuY, FotinosA, MaoLL, AtassiN, ZhouEW, AhmadS, GuanY, BerryJD, CudkowiczME, WangX (2014) Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov Today20:65–75
CrossRef Google scholar
[74]
ZhuY, FotinosA, MaoLL, AtassiN, ZhouEW, AhmadS, GuanY, BerryJD, CudkowiczME, WangX (2015) Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov Today20:65–75
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is an open access publication
AI Summary AI Mindmap
PDF(5762 KB)

Accesses

Citations

Detail

Sections
Recommended

/