CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs
Lixia Wang, Fei Yi, Lina Fu, Jiping Yang, Si Wang, Zhaoxia Wang, Keiichiro Suzuki, Liang Sun, Xiuling Xu, Yang Yu, Jie Qiao, Juan Carlos Izpisua Belmonte, Ze Yang, Yun Yuan, Jing Qu, Guang-Hui Liu
CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts of familial ALS patients bearing SOD1+/A272C and FUS+/G1566A mutations, respectively. We further generated gene corrected ALS iPSCs using CRISPR/Cas9 system. Genome-wide RNA sequencing (RNA-seq) analysis ofmotor neurons derived from SOD1+/A272C and corrected iPSCs revealed 899 aberrant transcripts. Our work may shed light on discovery of early biomarkers and pathways dysregulated in ALS, as well as provide a basis for novel therapeutic strategies to treat ALS.
ALS / CRISPR/Cas9 / gene correction / iPSC disease modeling
[1] |
Al-ChalabiA, HardimanO (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol9:617–623
CrossRef
Google scholar
|
[2] |
AlexianuME, HoBK, MohamedAH, La BellaV, SmithRG, AppelSH (1994) The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol36:846–858
CrossRef
Google scholar
|
[3] |
AndersS, HuberW (2010) Differential expression analysis for sequence count data. Genome Biol11:1–12
CrossRef
Google scholar
|
[4] |
AronicaE, CataniaMV, GeurtsJ, YankayaB, TroostD (2001) Immunohistochemical localization of group I and II metabotropic glutamate receptors in control and amyotrophic lateral sclerosis human spinal cord: upregulation in reactive astrocytes. Neuroscience105:509–520
CrossRef
Google scholar
|
[5] |
BaechtoldH, KurodaM, SokJ, RonD, , LopezBS, AkhmedovAT (1999) Human 75-kDa DNA-pairing protein is identical to the prooncoprotein TLS/FUS and is able to promote D-loop formation. J Biol Chem274:34337–34342
CrossRef
Google scholar
|
[6] |
BoscoDA, MorfiniG, KarabacakNM, SongY, Gros-LouisF, PasinelliP,GoolsbyH, FontaineBA, LemayN, McKenna-YasekD
CrossRef
Google scholar
|
[7] |
BoultingGL, KiskinisE, CroftGF, AmorosoMW, OakleyDH, WaingerBJ, WilliamsDJ, KahlerDJ, YamakiM, DavidowL, RodolfaCT
CrossRef
Google scholar
|
[8] |
BruijnLI, HouseweartMK, KatoS, AndersonKL, AndersonSD, OhamaE, ReaumeAG, ScottRW, ClevelandDW (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science281:1851–1854
CrossRef
Google scholar
|
[9] |
BruijnLI, MillerTM, ClevelandDW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci27:723–749
CrossRef
Google scholar
|
[10] |
CasciI, PandeyUB (2015) A fruitful endeavor: modeling ALS in the fruit fly. Brain Res1607:47–74
CrossRef
Google scholar
|
[11] |
ChenH, QianK, DuZ, CaoJ, PetersenA, LiuH, BlackbournLW, HuangCL, ErrigoA, YinY
CrossRef
Google scholar
|
[12] |
ChiL, GanL, LuoC, LuoC, LienL, LiuR (2007) Temporal response of neural progenitor cells to disease onset and progression in amyotrophic lateral sclerosis-like transgenic mice. Stem Cells Dev16:5579–5588
CrossRef
Google scholar
|
[13] |
CirilloG, ColangeloAM, De LucaC, SavareseL, BarillariMR, AlberghinaL, PapaM (2016) Modulation of matrix metalloproteinases activity in the ventral horn of the spinal cord restores neuroglial synaptic homeostasis and neurotrophic support following peripheral nerve injury. PLoS ONE11:152750–152762
CrossRef
Google scholar
|
[14] |
ConfortiL, AdalbertR, ColemanMP (2007) Neuronal death: where does the end begin? Trends Neurosci30:159–166
CrossRef
Google scholar
|
[15] |
CortiS, NizzardoM, SimoneC, FalconeM, NardiniM, RonchiD, DonadoniC, SalaniS, RiboldiG, MagriF
CrossRef
Google scholar
|
[16] |
CrozatA, AmanP, MandahlN, MandahlN, RonD (1993) Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature363:640–644
CrossRef
Google scholar
|
[17] |
De LucaC, PapaMA (2016) Looking inside the matrix: perineuronal nets in plasticity, maladaptive plasticity and neurological disorders. Neurochem Res41:1507–1515
CrossRef
Google scholar
|
[18] |
DingQ, ReganSN, XiaY, OostromLA, CowanCA, MusunuruK (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell12:393–394
CrossRef
Google scholar
|
[19] |
DingZ, SuiL, RenR, LiuY, XuX, FuL, BaiR, YuanT, HaoY, ZhangW
CrossRef
Google scholar
|
[20] |
DrepperC, HerrmannT, WessigC, BeckM, SendtnerM (2011) C-terminal FUS/TLS mutations in familial and sporadic ALS in Germany. Neurobiol Aging32:548–552
CrossRef
Google scholar
|
[21] |
DuZW, ChenH, LiuH, LuJ, QianK, HuangCL, ZhongX, FanF, ZhangSC (2015) Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat Commun6:6626–6638
CrossRef
Google scholar
|
[22] |
DuanS, YuanG, LiuX, RenR, LiJ, ZhangW, WuJ, XuX, FuL, LiY
CrossRef
Google scholar
|
[23] |
EgawaN, KitaokaS, TsukitaK, NaitohM, TakahashiK, YamamotoT, AdachiF, KondoT, OkitaK, AsakaI, AoiT
CrossRef
Google scholar
|
[24] |
FischerLR, CulverDG, TennantP, DavisAA, WangM, Castellano-SanchezA, KhanJ, PolakMA, GlassJD (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol185:232–240
CrossRef
Google scholar
|
[25] |
FuL, XuX, RenR, WuJ, ZhangW, YangJ, RenX, WangS, ZhaoY, SunL
CrossRef
Google scholar
|
[26] |
HigelinJ, DemestreM, PutzS, DellingJP, JacobC, LutzAK, BausingerJ, HuberAK, KlingensteinM, BarbiG
CrossRef
Google scholar
|
[27] |
HuangC, ZhouH, TongJ, ChenH, LiuYJ, WangD, WeiX, XiaXG (2011) FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PLoS Genet7:1–10
CrossRef
Google scholar
|
[28] |
IchiyanagiN, FujimoriK, YanoM, Ishihara-FujisakiC, SoneT, AkiyamaT, OkadaY, AkamatsuW, MatsumotoT, IshikawaM
CrossRef
Google scholar
|
[29] |
JulienJ-P, KrizJ (2006) Transgenic mouse models of amyotrophic lateral sclerosis. Biochim Biophys Acta (BBA)1762:1013–1024
CrossRef
Google scholar
|
[30] |
KanningKC, KaplanA, HendersonCE (2010) Motor neuron diversity in development and disease. Annu Rev Neurosci33:409–440
CrossRef
Google scholar
|
[31] |
KiskinisE, SandoeJ, WilliamsLA, BoultingGL, MocciaR, WaingerBJ, HanS, PengT, ThamsS, MikkilineniS
CrossRef
Google scholar
|
[32] |
KubbenN, ZhangW, WangL, VossTC, YangJ, QuJ, LiuGH, MisteliT (2016) Repression of the antioxidant NRF2 pathway in premature aging. Cell165:1361–1374
CrossRef
Google scholar
|
[33] |
KudoLC, ParfenovaL, ViN, LauK, PomakianJ, ValdmanisP, RouleauGA, VintersHV, Wiedau-PazosM, KarstenSL (2010) Integrative gene–tissue microarray-based approach for identification of human disease biomarkers: application to amyotrophic lateral sclerosis. Hum Mol Genet19:3233–3253
CrossRef
Google scholar
|
[34] |
LaiSL, AbramzonY, SchymickJC, StephanDA, DunckleyT, DillmanA, CooksonM, CalvoA, BattistiniS, GianniniF
CrossRef
Google scholar
|
[35] |
LattanteS, RouleauGA, KabashiE (2013) TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat34:812–826
CrossRef
Google scholar
|
[36] |
LeeJC, JinY, JinJ, KangBG, NamDH, JooKM, ChaCI (2011) Functional neural stem cell isolation from brains of adult mutant SOD1 (SOD1(G93A)) transgenic amyotrophic lateral sclerosis (ALS) mice. Neurol Res33:33–37
CrossRef
Google scholar
|
[37] |
LeeJH, KwonDH (2013) Calumenin has a role in the alleviation of ER stress in neonatal rat cardiomyocytes. Biochem Biophys Res Commun439:327–332
CrossRef
Google scholar
|
[38] |
LeeS, ShangY, RedmondSA, UrismanA, TangAA, LiKH, BurlingameAL, PakRA, JovicicA, GitlerAD
CrossRef
Google scholar
|
[39] |
LenziJ, De SantisR, de TurrisV, MorlandoM, LaneveP, CalvoA, CaliendoV, ChioA, RosaA, BozzoniI (2015) ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Dis Model Mech8:755–766
CrossRef
Google scholar
|
[40] |
LiY, BalasubramanianU, CohenD, ZhangP-W, MosmillerE, SattlerR, MaragakisNJ, RothsteinJD (2015) A comprehensive library of familial human amyotrophic lateral sclerosis induced pluripotent stem cells. PLOS ONE10:118266–118279
CrossRef
Google scholar
|
[41] |
LiY, ZhangW, ChangL, HanY, SunL, GongX, TangH, LiuZ, DengH, YeY
CrossRef
Google scholar
|
[42] |
LiangP, XuY, ZhangX, DingC, HuangR, ZhangZ, LvJ, XieX, ChenY, LiY
CrossRef
Google scholar
|
[43] |
LiuG-H, DingZ, Izpisua BelmonteJC (2012a) iPSC technology to study human aging and aging-related disorders. Curr Opin Cell Biol24:765–774
CrossRef
Google scholar
|
[44] |
LiuGH, BarkhoBZ, RuizS, DiepD, QuJ, YangS-L, PanopoulosAD, SuzukiK, KurianL, WalshC, ThompsonJ
CrossRef
Google scholar
|
[45] |
LiuGH, QuJ, SuzukiK, NivetE, LiM, MontserratN, YiF, XuX, RuizS, ZhangW
CrossRef
Google scholar
|
[46] |
LiuGH, SuzukiK, LiM, QuJ, MontserratN, TarantinoC, GuY, YiF, XuX, ZhangW
CrossRef
Google scholar
|
[47] |
LiuGH, SuzukiK, QuJ, Sancho-MartinezI, YiF, LiM, KumarS, NivetE, KimJ, SoligallaRD
CrossRef
Google scholar
|
[48] |
LiuX, ChenJ, LiuW, LiX, ChenQ, LiuT, GaoS, DengM (2015) The fused in sarcoma protein forms cytoplasmic aggregates in motor neurons derived from integration-free induced pluripotent stem cells generated from a patient with familial amyotrophic lateral sclerosis carrying the FUS-P525L mutation. Neurogenetics16:223–231
CrossRef
Google scholar
|
[49] |
MaliP, YangL, EsveltKM, AachJ, GuellM, DiCarloJE, NorvilleJE, ChurchGM (2013). RNA-guided human genome engineering via Cas9. Science339:823–826
CrossRef
Google scholar
|
[50] |
MauryY, ComeJ, PiskorowskiRA, Salah-MohellibiN, ChevaleyreV, PeschanskiM, MartinatC, NedelecS (2015) Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat Biotechnol33:89–96
CrossRef
Google scholar
|
[51] |
NagaiM, ReDB, NagataT, ChalazonitisA, JessellTM, WichterleH, PrzedborskiS (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci10:615–622
CrossRef
Google scholar
|
[52] |
OkitaK, MatsumuraY, SatoY, OkadaA, MorizaneA, OkamotoS, HongH, NakagawaM, TanabeK, TezukaK
CrossRef
Google scholar
|
[53] |
PanH, GuanD, LiuX, LiJ, WangL, WuJ, ZhouJ, ZhangW, RenR, ZhangW
CrossRef
Google scholar
|
[54] |
PasinelliP, BrownRH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci7:710–723
CrossRef
Google scholar
|
[55] |
PetersDT, CowanCA, MusunuruK (2013) Genome editing in human pluripotent stem cells. StemBook.
|
[56] |
QuQ, LiD, LouisKR, LiX, YangH, SunQ, CrandallSR, TsangS, ZhouJ, CoxCL
CrossRef
Google scholar
|
[57] |
RenR, DengL, XueY, SuzukiK, ZhangW, YuY, WuJ, SunL, GongX, LuanH
CrossRef
Google scholar
|
[58] |
RobberechtW, PhilipsT (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci14:248–264
CrossRef
Google scholar
|
[59] |
RosenDR, SiddiqueT, PattersonD, FiglewiczDA, SappP, HentatiA, DonaldsonD, GotoJ, O’ReganJP, DengH-X
CrossRef
Google scholar
|
[60] |
SharmaA, LyashchenkoAK, LuL, NasrabadySE, ElmalehM, MendelsohnM, NemesA, TapiaJC, MentisGZ, ShneiderNA (2016) ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun7:10465–10479
CrossRef
Google scholar
|
[61] |
SolemanS, FilippovMA, DityatevA, FawcettJW (2013) Targeting the neural extracellular matrix in neurological disorders. Neuroscience253:194–213
CrossRef
Google scholar
|
[62] |
SuzukiK, TsunekawaY, Hernandez-BenitezR, WuJ, ZhuJ, KimEJ, HatanakaF, YamamotoM, AraokaT, LiZ
CrossRef
Google scholar
|
[63] |
SuzukiK, YuC, QuJ, LiM, YaoX, YuanT, GoeblA, TangS, RenR, AizawaE
CrossRef
Google scholar
|
[64] |
TakahashiK, TanabeK, OhnukiM, NaritaM, IchisakaT, TomodaK, YamanakaS (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131:861–872
CrossRef
Google scholar
|
[65] |
TrapnellC, PachterL, SalzbergSL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics25:1105–1111
CrossRef
Google scholar
|
[66] |
TurnerBJ, TalbotK (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol85:94–134
CrossRef
Google scholar
|
[67] |
VanceC, RogeljB, HortobágyiT, De VosKJ, NishimuraAL, SreedharanJ, HuX, SmithB, RuddyD, WrightP
CrossRef
Google scholar
|
[68] |
VeresA, GosisBS, DingQ, CollinsR, RagavendranA, BrandH, ErdinS, TalkowskiME, MusunuruK (2014) Low incidence of offtarget mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell15:27–30
CrossRef
Google scholar
|
[69] |
Wainger BrianJ, KiskinisE, MellinC, WiskowO, Han SteveSW, SandoeJ, Perez NumaP, Williams LuisA, LeeS, BoultingG
CrossRef
Google scholar
|
[70] |
WoehlbierU, ColomboA, SaaranenMJ, PerezV, OjedaJ, BustosFJ, AndreuCI, TorresM, ValenzuelaV, MedinasDB
CrossRef
Google scholar
|
[71] |
Yang YinM, Gupta ShaileshK, Kim KevinJ, Powers BeritE, CerqueiraA, Wainger BrianJ, Ngo HienD, Rosowski KathrynA, Schein PamelaA, Ackeifi CourtneyA
CrossRef
Google scholar
|
[72] |
ZhangW, LiJ, SuzukiK, QuJ, WangP, ZhouJ, LiuX, RenR, XuX, OcampoA
CrossRef
Google scholar
|
[73] |
ZhuY, FotinosA, MaoLL, AtassiN, ZhouEW, AhmadS, GuanY, BerryJD, CudkowiczME, WangX (2014) Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov Today20:65–75
CrossRef
Google scholar
|
[74] |
ZhuY, FotinosA, MaoLL, AtassiN, ZhouEW, AhmadS, GuanY, BerryJD, CudkowiczME, WangX (2015) Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov Today20:65–75
CrossRef
Google scholar
|
/
〈 | 〉 |