CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs

Lixia Wang , Fei Yi , Lina Fu , Jiping Yang , Si Wang , Zhaoxia Wang , Keiichiro Suzuki , Liang Sun , Xiuling Xu , Yang Yu , Jie Qiao , Juan Carlos Izpisua Belmonte , Ze Yang , Yun Yuan , Jing Qu , Guang-Hui Liu

Protein Cell ›› 2017, Vol. 8 ›› Issue (5) : 365 -378.

PDF (5762KB)
Protein Cell ›› 2017, Vol. 8 ›› Issue (5) : 365 -378. DOI: 10.1007/s13238-017-0397-3
RESEARCH ARTICLE
RESEARCH ARTICLE

CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs

Author information +
History +
PDF (5762KB)

Abstract

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts of familial ALS patients bearing SOD1+/A272C and FUS+/G1566A mutations, respectively. We further generated gene corrected ALS iPSCs using CRISPR/Cas9 system. Genome-wide RNA sequencing (RNA-seq) analysis ofmotor neurons derived from SOD1+/A272C and corrected iPSCs revealed 899 aberrant transcripts. Our work may shed light on discovery of early biomarkers and pathways dysregulated in ALS, as well as provide a basis for novel therapeutic strategies to treat ALS.

Keywords

ALS / CRISPR/Cas9 / gene correction / iPSC disease modeling

Cite this article

Download citation ▾
Lixia Wang, Fei Yi, Lina Fu, Jiping Yang, Si Wang, Zhaoxia Wang, Keiichiro Suzuki, Liang Sun, Xiuling Xu, Yang Yu, Jie Qiao, Juan Carlos Izpisua Belmonte, Ze Yang, Yun Yuan, Jing Qu, Guang-Hui Liu. CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell, 2017, 8(5): 365-378 DOI:10.1007/s13238-017-0397-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-ChalabiA, HardimanO (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol9:617–623

[2]

AlexianuME, HoBK, MohamedAH, La BellaV, SmithRG, AppelSH (1994) The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol36:846–858

[3]

AndersS, HuberW (2010) Differential expression analysis for sequence count data. Genome Biol11:1–12

[4]

AronicaE, CataniaMV, GeurtsJ, YankayaB, TroostD (2001) Immunohistochemical localization of group I and II metabotropic glutamate receptors in control and amyotrophic lateral sclerosis human spinal cord: upregulation in reactive astrocytes. Neuroscience105:509–520

[5]

BaechtoldH, KurodaM, SokJ, RonD, , LopezBS, AkhmedovAT (1999) Human 75-kDa DNA-pairing protein is identical to the prooncoprotein TLS/FUS and is able to promote D-loop formation. J Biol Chem274:34337–34342

[6]

BoscoDA, MorfiniG, KarabacakNM, SongY, Gros-LouisF, PasinelliP,GoolsbyH, FontaineBA, LemayN, McKenna-YasekD (2010) Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci13:1396–1403

[7]

BoultingGL, KiskinisE, CroftGF, AmorosoMW, OakleyDH, WaingerBJ, WilliamsDJ, KahlerDJ, YamakiM, DavidowL, RodolfaCT (2011) A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol29:279–286.

[8]

BruijnLI, HouseweartMK, KatoS, AndersonKL, AndersonSD, OhamaE, ReaumeAG, ScottRW, ClevelandDW (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science281:1851–1854

[9]

BruijnLI, MillerTM, ClevelandDW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci27:723–749

[10]

CasciI, PandeyUB (2015) A fruitful endeavor: modeling ALS in the fruit fly. Brain Res1607:47–74

[11]

ChenH, QianK, DuZ, CaoJ, PetersenA, LiuH, BlackbournLW, HuangCL, ErrigoA, YinY (2014) Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell14:796–809.

[12]

ChiL, GanL, LuoC, LuoC, LienL, LiuR (2007) Temporal response of neural progenitor cells to disease onset and progression in amyotrophic lateral sclerosis-like transgenic mice. Stem Cells Dev16:5579–5588

[13]

CirilloG, ColangeloAM, De LucaC, SavareseL, BarillariMR, AlberghinaL, PapaM (2016) Modulation of matrix metalloproteinases activity in the ventral horn of the spinal cord restores neuroglial synaptic homeostasis and neurotrophic support following peripheral nerve injury. PLoS ONE11:152750–152762

[14]

ConfortiL, AdalbertR, ColemanMP (2007) Neuronal death: where does the end begin? Trends Neurosci30:159–166

[15]

CortiS, NizzardoM, SimoneC, FalconeM, NardiniM, RonchiD, DonadoniC, SalaniS, RiboldiG, MagriF (2012) Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med4:165–197

[16]

CrozatA, AmanP, MandahlN, MandahlN, RonD (1993) Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature363:640–644

[17]

De LucaC, PapaMA (2016) Looking inside the matrix: perineuronal nets in plasticity, maladaptive plasticity and neurological disorders. Neurochem Res41:1507–1515

[18]

DingQ, ReganSN, XiaY, OostromLA, CowanCA, MusunuruK (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell12:393–394

[19]

DingZ, SuiL, RenR, LiuY, XuX, FuL, BaiR, YuanT, HaoY, ZhangW (2015) A widely adaptable approach to generate integration-free iPSCs from non-invasively acquired human somatic cells. Protein Cell6:386–389

[20]

DrepperC, HerrmannT, WessigC, BeckM, SendtnerM (2011) C-terminal FUS/TLS mutations in familial and sporadic ALS in Germany. Neurobiol Aging32:548–552

[21]

DuZW, ChenH, LiuH, LuJ, QianK, HuangCL, ZhongX, FanF, ZhangSC (2015) Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat Commun6:6626–6638

[22]

DuanS, YuanG, LiuX, RenR, LiJ, ZhangW, WuJ, XuX, FuL, LiY (2015) PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun6:10068–10082

[23]

EgawaN, KitaokaS, TsukitaK, NaitohM, TakahashiK, YamamotoT, AdachiF, KondoT, OkitaK, AsakaI, AoiT (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med4:145104–145112

[24]

FischerLR, CulverDG, TennantP, DavisAA, WangM, Castellano-SanchezA, KhanJ, PolakMA, GlassJD (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol185:232–240

[25]

FuL, XuX, RenR, WuJ, ZhangW, YangJ, RenX, WangS, ZhaoY, SunL (2016) Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs. Protein Cell7:210–221

[26]

HigelinJ, DemestreM, PutzS, DellingJP, JacobC, LutzAK, BausingerJ, HuberAK, KlingensteinM, BarbiG (2016) FUS mislocalization and vulnerability to DNA damage in ALS patients derived hiPSCs and aging motoneurons. Front Cell Neurosci10:290–311

[27]

HuangC, ZhouH, TongJ, ChenH, LiuYJ, WangD, WeiX, XiaXG (2011) FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PLoS Genet7:1–10

[28]

IchiyanagiN, FujimoriK, YanoM, Ishihara-FujisakiC, SoneT, AkiyamaT, OkadaY, AkamatsuW, MatsumotoT, IshikawaM (2016) Establishment of in vitro FUS-associated familial amyotrophic lateral sclerosis model using human induced pluripotent stem cells. Stem Cell Rep6:496–510

[29]

JulienJ-P, KrizJ (2006) Transgenic mouse models of amyotrophic lateral sclerosis. Biochim Biophys Acta (BBA)1762:1013–1024

[30]

KanningKC, KaplanA, HendersonCE (2010) Motor neuron diversity in development and disease. Annu Rev Neurosci33:409–440

[31]

KiskinisE, SandoeJ, WilliamsLA, BoultingGL, MocciaR, WaingerBJ, HanS, PengT, ThamsS, MikkilineniS (2014) Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell14:781–795

[32]

KubbenN, ZhangW, WangL, VossTC, YangJ, QuJ, LiuGH, MisteliT (2016) Repression of the antioxidant NRF2 pathway in premature aging. Cell165:1361–1374

[33]

KudoLC, ParfenovaL, ViN, LauK, PomakianJ, ValdmanisP, RouleauGA, VintersHV, Wiedau-PazosM, KarstenSL (2010) Integrative gene–tissue microarray-based approach for identification of human disease biomarkers: application to amyotrophic lateral sclerosis. Hum Mol Genet19:3233–3253

[34]

LaiSL, AbramzonY, SchymickJC, StephanDA, DunckleyT, DillmanA, CooksonM, CalvoA, BattistiniS, GianniniF (2011) FUS mutations in sporadic amyotrophic lateral sclerosis. Neurobiol Aging32:551–554

[35]

LattanteS, RouleauGA, KabashiE (2013) TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat34:812–826

[36]

LeeJC, JinY, JinJ, KangBG, NamDH, JooKM, ChaCI (2011) Functional neural stem cell isolation from brains of adult mutant SOD1 (SOD1(G93A)) transgenic amyotrophic lateral sclerosis (ALS) mice. Neurol Res33:33–37

[37]

LeeJH, KwonDH (2013) Calumenin has a role in the alleviation of ER stress in neonatal rat cardiomyocytes. Biochem Biophys Res Commun439:327–332

[38]

LeeS, ShangY, RedmondSA, UrismanA, TangAA, LiKH, BurlingameAL, PakRA, JovicicA, GitlerAD (2016) Activation of HIPK2 promotes ER stress-mediated neurodegeneration in amyotrophic lateral sclerosis. Neuron91:41–55

[39]

LenziJ, De SantisR, de TurrisV, MorlandoM, LaneveP, CalvoA, CaliendoV, ChioA, RosaA, BozzoniI (2015) ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Dis Model Mech8:755–766

[40]

LiY, BalasubramanianU, CohenD, ZhangP-W, MosmillerE, SattlerR, MaragakisNJ, RothsteinJD (2015) A comprehensive library of familial human amyotrophic lateral sclerosis induced pluripotent stem cells. PLOS ONE10:118266–118279

[41]

LiY, ZhangW, ChangL, HanY, SunL, GongX, TangH, LiuZ, DengH, YeY (2016) Vitamin C alleviates aging defects in a stem cell model for Werner syndrome. Protein Cell7:478–488

[42]

LiangP, XuY, ZhangX, DingC, HuangR, ZhangZ, LvJ, XieX, ChenY, LiY (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell6:363–372

[43]

LiuG-H, DingZ, Izpisua BelmonteJC (2012a) iPSC technology to study human aging and aging-related disorders. Curr Opin Cell Biol24:765–774

[44]

LiuGH, BarkhoBZ, RuizS, DiepD, QuJ, YangS-L, PanopoulosAD, SuzukiK, KurianL, WalshC, ThompsonJ (2011a) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature472: 221–225

[45]

LiuGH, QuJ, SuzukiK, NivetE, LiM, MontserratN, YiF, XuX, RuizS, ZhangW (2012b) Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature491:603–607

[46]

LiuGH, SuzukiK, LiM, QuJ, MontserratN, TarantinoC, GuY, YiF, XuX, ZhangW (2014) Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun5:4330–4347

[47]

LiuGH, SuzukiK, QuJ, Sancho-MartinezI, YiF, LiM, KumarS, NivetE, KimJ, SoligallaRD (2011b) Targeted gene correction of laminopathy-associated LMNA mutations in patientspecific iPSCs. Cell Stem Cell8:688–694

[48]

LiuX, ChenJ, LiuW, LiX, ChenQ, LiuT, GaoS, DengM (2015) The fused in sarcoma protein forms cytoplasmic aggregates in motor neurons derived from integration-free induced pluripotent stem cells generated from a patient with familial amyotrophic lateral sclerosis carrying the FUS-P525L mutation. Neurogenetics16:223–231

[49]

MaliP, YangL, EsveltKM, AachJ, GuellM, DiCarloJE, NorvilleJE, ChurchGM (2013). RNA-guided human genome engineering via Cas9. Science339:823–826

[50]

MauryY, ComeJ, PiskorowskiRA, Salah-MohellibiN, ChevaleyreV, PeschanskiM, MartinatC, NedelecS (2015) Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat Biotechnol33:89–96

[51]

NagaiM, ReDB, NagataT, ChalazonitisA, JessellTM, WichterleH, PrzedborskiS (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci10:615–622

[52]

OkitaK, MatsumuraY, SatoY, OkadaA, MorizaneA, OkamotoS, HongH, NakagawaM, TanabeK, TezukaK (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods8:409–412

[53]

PanH, GuanD, LiuX, LiJ, WangL, WuJ, ZhouJ, ZhangW, RenR, ZhangW (2016) SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Research26:190–205

[54]

PasinelliP, BrownRH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci7:710–723

[55]

PetersDT, CowanCA, MusunuruK (2013) Genome editing in human pluripotent stem cells. StemBook.

[56]

QuQ, LiD, LouisKR, LiX, YangH, SunQ, CrandallSR, TsangS, ZhouJ, CoxCL (2014) High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of Islet-1. Nat Commun5:3449–3462

[57]

RenR, DengL, XueY, SuzukiK, ZhangW, YuY, WuJ, SunL, GongX, LuanH (2017) Visualization of aging-associated chromatin alterations with an engineered TALE system

[58]

RobberechtW, PhilipsT (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci14:248–264

[59]

RosenDR, SiddiqueT, PattersonD, FiglewiczDA, SappP, HentatiA, DonaldsonD, GotoJ, O’ReganJP, DengH-X (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature362:59–62

[60]

SharmaA, LyashchenkoAK, LuL, NasrabadySE, ElmalehM, MendelsohnM, NemesA, TapiaJC, MentisGZ, ShneiderNA (2016) ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun7:10465–10479

[61]

SolemanS, FilippovMA, DityatevA, FawcettJW (2013) Targeting the neural extracellular matrix in neurological disorders. Neuroscience253:194–213

[62]

SuzukiK, TsunekawaY, Hernandez-BenitezR, WuJ, ZhuJ, KimEJ, HatanakaF, YamamotoM, AraokaT, LiZ (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature540:144–149

[63]

SuzukiK, YuC, QuJ, LiM, YaoX, YuanT, GoeblA, TangS, RenR, AizawaE (2014) Targeted gene correction minimally impacts whole-genome mutational load in human-diseasespecific induced pluripotent stem cell clones. Cell Stem Cell15:31–36

[64]

TakahashiK, TanabeK, OhnukiM, NaritaM, IchisakaT, TomodaK, YamanakaS (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131:861–872

[65]

TrapnellC, PachterL, SalzbergSL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics25:1105–1111

[66]

TurnerBJ, TalbotK (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol85:94–134

[67]

VanceC, RogeljB, HortobágyiT, De VosKJ, NishimuraAL, SreedharanJ, HuX, SmithB, RuddyD, WrightP (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science323:1208–1211

[68]

VeresA, GosisBS, DingQ, CollinsR, RagavendranA, BrandH, ErdinS, TalkowskiME, MusunuruK (2014) Low incidence of offtarget mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell15:27–30

[69]

Wainger BrianJ, KiskinisE, MellinC, WiskowO, Han SteveSW, SandoeJ, Perez NumaP, Williams LuisA, LeeS, BoultingG (2014) Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Reports7:1–11

[70]

WoehlbierU, ColomboA, SaaranenMJ, PerezV, OjedaJ, BustosFJ, AndreuCI, TorresM, ValenzuelaV, MedinasDB (2016) ALS-linked protein disulfide isomerase variants cause motor dysfunction. EMBO J35:845–865

[71]

Yang YinM, Gupta ShaileshK, Kim KevinJ, Powers BeritE, CerqueiraA, Wainger BrianJ, Ngo HienD, Rosowski KathrynA, Schein PamelaA, Ackeifi CourtneyA (2013) A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell12:713–726

[72]

ZhangW, LiJ, SuzukiK, QuJ, WangP, ZhouJ, LiuX, RenR, XuX, OcampoA (2015) A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science348:1160–1163

[73]

ZhuY, FotinosA, MaoLL, AtassiN, ZhouEW, AhmadS, GuanY, BerryJD, CudkowiczME, WangX (2014) Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov Today20:65–75

[74]

ZhuY, FotinosA, MaoLL, AtassiN, ZhouEW, AhmadS, GuanY, BerryJD, CudkowiczME, WangX (2015) Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov Today20:65–75

RIGHTS & PERMISSIONS

The Author(s) 2017. This article is an open access publication

AI Summary AI Mindmap
PDF (5762KB)

Supplementary files

PAC-0365-16293-LGH_suppl_1

PAC-0365-16293-LGH_suppl_2

PAC-0365-16293-LGH_suppl_3

PAC-0365-16293-LGH_suppl_4

887

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/