RESEARCH ARTICLE

miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma

  • Qian Fan 1 ,
  • Xiangrui Meng 1 ,
  • Hongwei Liang 2 ,
  • Huilai Zhang 1 ,
  • Xianming Liu 1 ,
  • Lanfang Li 1 ,
  • Wei Li 1 ,
  • Wu Sun 3 ,
  • Haiyang Zhang 3 ,
  • Ke Zen 2 ,
  • Chen-Yu Zhang 2 ,
  • Zhen Zhou , 2 ,
  • Xi Chen , 2 ,
  • Yi Ba , 3
Expand
  • 1. Department of Lymphoma, Sino-US Center for Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
  • 2. State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
  • 3. Department of Digestion, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China

Received date: 08 Jul 2016

Accepted date: 06 Aug 2016

Published date: 24 Jan 2017

Copyright

2016 The Author(s) 2016. This article is published with open access at Springerlink.com and journal.hep.com.cn

Abstract

The BCL6 (B-Cell Lymphoma 6) gene is a proto-oncogene that is often expressed in diffuse large B-cell lymphomas (DLBCLs). BCL6 loss of function can kill DLBCL cells, demonstrating that BCL6 is necessary for the survival of DLBCL cells and could be a therapeutic target. In this study, we found that BCL6 protein levels were consistently upregulated in DLBCL tissues, whereas its mRNA levels varied randomly in tissues, suggesting that a post-transcriptional mechanism was involved in BCL6 regulation. We used bioinformatics analysis to search for miRNAs, which potentially target BCL6, and identified specific targeting sites for miR-10a in the 3′-untranslated region (3′-UTR) of BCL6. We further identified an inverse correlation between miR-10a levels and BCL6 protein levels, but not mRNA levels, in DLBCL tumor tissue samples. By overexpressing or knocking down miR-10a in DLBCL cells, we experimentally validated that miR-10a directly recognizes the 3′-UTR of the BCL6 transcript and regulated BCL6 expression. Furthermore, we demonstrated that negatively regulating BCL6 by miR-10a suppressed the proliferation and promoted apoptosis of DLBCL cells.

Cite this article

Qian Fan , Xiangrui Meng , Hongwei Liang , Huilai Zhang , Xianming Liu , Lanfang Li , Wei Li , Wu Sun , Haiyang Zhang , Ke Zen , Chen-Yu Zhang , Zhen Zhou , Xi Chen , Yi Ba . miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma[J]. Protein & Cell, 2016 , 7(12) : 899 -912 . DOI: 10.1007/s13238-016-0316-z

1
Agirre X, Jimenez-Velasco A, San Jose-Eneriz E, Garate L, Bandres E, Cordeu L, Aparicio O, Saez B, Navarro G, Vilas-Zornoza A, Perez-Roger I, Garcia-Foncillas J, Torres A, Heiniger A, Calasanz MJ, Fortes P, Roman-Gomez J, Prosper F (2008) Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res 6 (12):1830–1840

DOI

2
Ambros V (2004) The functions of animal microRNAs. Nature 431 (7006):350–355

DOI

3
Baron BW, Anastasi J, Montag A, Huo D, Baron RM, Karrison T, Thirman MJ, Subudhi SK, Chin RK, Felsher DW, Fu YX, McKeithan TW, Baron JM (2004) The human BCL6 transgene promotes the development of lymphomas in the mouse. Proc Natl Acad Sci USA 101(39):14198–14203

DOI

4
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

DOI

5
Basso K, Dalla-Favera R (2012) Roles of BCL6 in normal and transformed germinal center B cells. Immunol Rev 247(1):172–183

DOI

6
Bertolo C, Roa S, Sagardoy A, Mena-Varas M, Robles EF, Martinez-Ferrandis JI, Sagaert X, Tousseyn T, Orta A, Lossos IS, Amar S, Natkunam Y, Briones J, Melnick A, Malumbres R, Martinez-Climent JA (2013) LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas. Br J Haematol 162 (5):621–630

DOI

7
Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

DOI

8
Cerchietti L, Melnick A (2013) Targeting BCL6 in diffuse large B-cell lymphoma: what does this mean for the future treatment? Expert Rev Hematol 6(4):343–345

DOI

9
Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K, Wang G, Ba Y, Zhu L, Wang J, Yang R, Zhang Y, Ren Z, Zen K, Zhang J, Zhang CY (2009) Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28(10):1385–1392

DOI

10
Duan S, Cermak L, Pagan JK, Rossi M, Martinengo C, di Celle PF, Chapuy B, Shipp M, Chiarle R, Pagano M (2012) FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature 481(7379):90–93

DOI

11
Ding J, Dirks WG, Ehrentraut S, Geffers R, MacLeod RA, Nagel S, Pommerenke C, Romani J, Scherr M, Vaas LA, Zaborski M, Drexler HG, Quentmeier H (2015) BCL6—regulated by AhR/ARNT and wild-type MEF2B—drives expression of germinal center markers MYBL1 and LMO2. Haematologica 100(6):801–809

DOI

12
Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269

DOI

13
Gao P, Li Q, Wang Z, Yan F, Lu C, Cao X (2014) Significance of BCL6, MYC, P53 genes abnormalities for the prognosis of diffuse large B-cell lymphoma. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 31 (5):628–631

14
Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, Israel MA (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67(6):2456–2468

DOI

15
Gerrard M, Waxman IM, Sposto R, Auperin A, Perkins SL, Goldman S, Harrison L, Pinkerton R, McCarthy K, Raphael M, Patte C, Cairo MS (2013) Outcome and pathologic classification of children and adolescents with mediastinal large B-cell lymphoma treated with FAB/LMB96 mature B-NHL therapy. Blood 121 (2):278–285

DOI

16
Hatzi K, Jiang Y, Huang C, Garrett-Bakelman F, Gearhart MD, Giannopoulou EG, Zumbo P, Kirouac K, Bhaskara S, Polo JM, Kormaksson M, MacKerell ADJr, Xue F, Mason CE, Hiebert SW, Prive GG, Cerchietti L, Bardwell VJ, Elemento O, Melnick A (2013) A hybrid mechanism of action for BCL6 in B cells defined by formation of functionally distinct complexes at enhancers and promoters. Cell Rep 4(3):578–588

DOI

17
Havelange V, Ranganathan P, Geyer S, Nicolet D, Huang X, Yu X, Volinia S, Kornblau SM, Andreeff M, Croce CM, Marcucci G, Bloomfield CD, Garzon R (2014) Implications of the miR-10 family in chemotherapy response of NPM1-mutated AML. Blood 123(15):2412–2415

DOI

18
He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

DOI

19
Hollister K, Kusam S, Wu H, Clegg N, Mondal A, Sawant DV, Dent AL (2013) Insights into the role of Bcl6 in follicular Th cells using a new conditional mutant mouse model. J Immunol 191(7):3705–3711

DOI

20
Ivey KN, Srivastava D (2015) microRNAs as developmental regulators. Cold Spring Harb Perspect Biol 7(7):a008144

DOI

21
John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2(11):e363

DOI

22
Jung I, Aguiar RC (2009) microRNA-155 expression and outcome in diffuse large B-cell lymphoma. Br J Haematol 144(1):138–140

DOI

23
Khan S, Wall D, Curran C, Newell J, Kerin MJ, Dwyer RM (2015) microRNA-10a is reduced in breast cancer and regulated in part through retinoic acid. BMC Cancer 15(1):345

DOI

24
Koscianska E, Krzyzosiak WJ (2014) Current understanding of the role of microRNAs in spinocerebellar ataxias. Cerebellum Ataxias 1:7

DOI

25
Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500

DOI

26
Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11 (9):597–610

DOI

27
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

DOI

28
Parekh S, Polo JM, Shaknovich R, Juszczynski P, Lev P, Ranuncolo SM, Yin Y, Klein U, Cattoretti G, Dalla Favera R, Shipp MA, Melnick A (2007) BCL6 programs lymphoma cells for survival and differentiation through distinct biochemical mechanisms. Blood 110(6):2067–2074

DOI

29
Parekh S, Prive G, Melnick A (2008) Therapeutic targeting of the BCL6 oncogene for diffuse large B-cell lymphomas. Leuk Lymphoma 49(5):874–882

DOI

30
Pillai RS, Bhattacharyya SN, Filipowicz W (2007) Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17(3):118–126

DOI

31
Polo JM, Dell’Oso T, Ranuncolo SM, Cerchietti L, Beck D, Da Silva GF, Prive GG, Licht JD, Melnick A (2004) Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat Med 10(12):1329–1335

DOI

32
Roehle A, Hoefig KP, Repsilber D, Thorns C, Ziepert M, Wesche KO, Thiere M, Loeffler M, Klapper W, Pfreundschuh M, Matolcsy A, Bernd HW, Reiniger L, Merz H, Feller AC (2008) microRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas. Br J Haematol 142(5):732–744

DOI

33
Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatinmodifying drugs in human cancer cells. Cancer Cell 9(6):435–443

DOI

34
Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM (2000) BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13(2):199–212

DOI

35
Takahashi H, Kanno T, Nakayamada S, Hirahara K, Sciume G, Muljo SA, Kuchen S, Casellas R, Wei L, Kanno Y, O’Shea JJ (2012) TGF-beta and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat Immunol 13(6):587–595

DOI

36
Van Den Neste E, Schmitz N, Mounier N, Gill D, Linch D, Trneny M, Milpied N, Radford J, Ketterer N, Shpilberg O, Duhrsen U, Ma D, Briere J, Thieblemont C, Salles G, Moskowitz CH, Glass B, Gisselbrecht C (2015) Outcome of patients with relapsed diffuse large B-cell lymphoma who fail second-line salvage regimens in the International CORAL study. Bone Marrow Transplant. 51 (1):51–57

DOI

37
Wang K, Xu Z, Wang N, Xu T, Zhu M (2014) microRNA and gene networks in human diffuse large B-cell lymphoma. Oncol Lett 8 (5):2225–2232

DOI

38
Westin JR, Fayad LE (2009) Beyond R-CHOP and the IPI in largecell lymphoma: molecular markers as an opportunity for stratification. Curr Hematol Malig Rep 4(4):218–224

DOI

39
Winter JN, Weller EA, Horning SJ, Krajewska M, Variakojis D, Habermann TM, Fisher RI, Kurtin PJ, Macon WR, Chhanabhai M, Felgar RE, Hsi ED, Medeiros LJ, Weick JK, Reed JC, Gascoyne RD (2006) Prognostic significance of Bcl-6 protein expression in DLBCL treated with CHOP or R-CHOP: a prospective correlative study. Blood 107(11):4207–4213

DOI

40
Yan Y, Luo YC, Wan HY, Wang J, Zhang PP, Liu M, Li X, Li S, Tang H (2013) microRNA-10a is involved in the metastatic process by regulating Eph tyrosine kinase receptor A4-mediated epithelialmesenchymal transition and adhesion in hepatoma cells. Hepatology 57(2):667–677

DOI

41
Yatomi Y (2012) From FAB classification to WHO classification of tumors of hematopoietic and lymphoid tissue. Rinsho Byori 60 (6):550–552

42
Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL, Srivastava M, Linterman M, Zheng L, Simpson N, Ellyard JI, Parish IA, Ma CS, Li QJ, Parish CR, Mackay CR, Vinuesa CG (2009) The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31(3):457–468

DOI

43
Zeng T, Li G (2014) microRNA10a enhances the metastatic potential of cervical cancer cells by targeting phosphatase and tensin homologue. Mol Med Rep 10(3):1377–1382

44
Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, Liang S, Naylor TL, Barchetti A, Ward MR, Yao G, Medina A, O’Brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty PA, Weber BL, Coukos G (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103(24):9136–9141

DOI

Outlines

/