miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma
Qian Fan, Xiangrui Meng, Hongwei Liang, Huilai Zhang, Xianming Liu, Lanfang Li, Wei Li, Wu Sun, Haiyang Zhang, Ke Zen, Chen-Yu Zhang, Zhen Zhou, Xi Chen, Yi Ba
miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma
The BCL6 (B-Cell Lymphoma 6) gene is a proto-oncogene that is often expressed in diffuse large B-cell lymphomas (DLBCLs). BCL6 loss of function can kill DLBCL cells, demonstrating that BCL6 is necessary for the survival of DLBCL cells and could be a therapeutic target. In this study, we found that BCL6 protein levels were consistently upregulated in DLBCL tissues, whereas its mRNA levels varied randomly in tissues, suggesting that a post-transcriptional mechanism was involved in BCL6 regulation. We used bioinformatics analysis to search for miRNAs, which potentially target BCL6, and identified specific targeting sites for miR-10a in the 3′-untranslated region (3′-UTR) of BCL6. We further identified an inverse correlation between miR-10a levels and BCL6 protein levels, but not mRNA levels, in DLBCL tumor tissue samples. By overexpressing or knocking down miR-10a in DLBCL cells, we experimentally validated that miR-10a directly recognizes the 3′-UTR of the BCL6 transcript and regulated BCL6 expression. Furthermore, we demonstrated that negatively regulating BCL6 by miR-10a suppressed the proliferation and promoted apoptosis of DLBCL cells.
microRNA / miR-10a / BCL6 / DLBCL / proliferation / apoptosis
[1] |
Agirre X, Jimenez-Velasco A, San Jose-Eneriz E, Garate L, Bandres E, Cordeu L, Aparicio O, Saez B, Navarro G, Vilas-Zornoza A, Perez-Roger I, Garcia-Foncillas J, Torres A, Heiniger A, Calasanz MJ, Fortes P, Roman-Gomez J, Prosper F (2008) Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res 6 (12):1830–1840
CrossRef
Google scholar
|
[2] |
Ambros V (2004) The functions of animal microRNAs. Nature 431 (7006):350–355
CrossRef
Google scholar
|
[3] |
Baron BW, Anastasi J, Montag A, Huo D, Baron RM, Karrison T, Thirman MJ, Subudhi SK, Chin RK, Felsher DW, Fu YX, McKeithan TW, Baron JM (2004) The human BCL6 transgene promotes the development of lymphomas in the mouse. Proc Natl Acad Sci USA 101(39):14198–14203
CrossRef
Google scholar
|
[4] |
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297
CrossRef
Google scholar
|
[5] |
Basso K, Dalla-Favera R (2012) Roles of BCL6 in normal and transformed germinal center B cells. Immunol Rev 247(1):172–183
CrossRef
Google scholar
|
[6] |
Bertolo C, Roa S, Sagardoy A, Mena-Varas M, Robles EF, Martinez-Ferrandis JI, Sagaert X, Tousseyn T, Orta A, Lossos IS, Amar S, Natkunam Y, Briones J, Melnick A, Malumbres R, Martinez-Climent JA (2013) LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas. Br J Haematol 162 (5):621–630
CrossRef
Google scholar
|
[7] |
Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866
CrossRef
Google scholar
|
[8] |
Cerchietti L, Melnick A (2013) Targeting BCL6 in diffuse large B-cell lymphoma: what does this mean for the future treatment? Expert Rev Hematol 6(4):343–345
CrossRef
Google scholar
|
[9] |
Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K, Wang G, Ba Y, Zhu L, Wang J, Yang R, Zhang Y, Ren Z, Zen K, Zhang J, Zhang CY (2009) Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28(10):1385–1392
CrossRef
Google scholar
|
[10] |
Duan S, Cermak L, Pagan JK, Rossi M, Martinengo C, di Celle PF, Chapuy B, Shipp M, Chiarle R, Pagano M (2012) FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature 481(7379):90–93
CrossRef
Google scholar
|
[11] |
Ding J, Dirks WG, Ehrentraut S, Geffers R, MacLeod RA, Nagel S, Pommerenke C, Romani J, Scherr M, Vaas LA, Zaborski M, Drexler HG, Quentmeier H (2015) BCL6—regulated by AhR/ARNT and wild-type MEF2B—drives expression of germinal center markers MYBL1 and LMO2. Haematologica 100(6):801–809
CrossRef
Google scholar
|
[12] |
Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269
CrossRef
Google scholar
|
[13] |
Gao P, Li Q, Wang Z, Yan F, Lu C, Cao X (2014) Significance of BCL6, MYC, P53 genes abnormalities for the prognosis of diffuse large B-cell lymphoma. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 31 (5):628–631
|
[14] |
Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, Israel MA (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67(6):2456–2468
CrossRef
Google scholar
|
[15] |
Gerrard M, Waxman IM, Sposto R, Auperin A, Perkins SL, Goldman S, Harrison L, Pinkerton R, McCarthy K, Raphael M, Patte C, Cairo MS (2013) Outcome and pathologic classification of children and adolescents with mediastinal large B-cell lymphoma treated with FAB/LMB96 mature B-NHL therapy. Blood 121 (2):278–285
CrossRef
Google scholar
|
[16] |
Hatzi K, Jiang Y, Huang C, Garrett-Bakelman F, Gearhart MD, Giannopoulou EG, Zumbo P, Kirouac K, Bhaskara S, Polo JM, Kormaksson M, MacKerell ADJr, Xue F, Mason CE, Hiebert SW, Prive GG, Cerchietti L, Bardwell VJ, Elemento O, Melnick A (2013) A hybrid mechanism of action for BCL6 in B cells defined by formation of functionally distinct complexes at enhancers and promoters. Cell Rep 4(3):578–588
CrossRef
Google scholar
|
[17] |
Havelange V, Ranganathan P, Geyer S, Nicolet D, Huang X, Yu X, Volinia S, Kornblau SM, Andreeff M, Croce CM, Marcucci G, Bloomfield CD, Garzon R (2014) Implications of the miR-10 family in chemotherapy response of NPM1-mutated AML. Blood 123(15):2412–2415
CrossRef
Google scholar
|
[18] |
He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531
CrossRef
Google scholar
|
[19] |
Hollister K, Kusam S, Wu H, Clegg N, Mondal A, Sawant DV, Dent AL (2013) Insights into the role of Bcl6 in follicular Th cells using a new conditional mutant mouse model. J Immunol 191(7):3705–3711
CrossRef
Google scholar
|
[20] |
Ivey KN, Srivastava D (2015) microRNAs as developmental regulators. Cold Spring Harb Perspect Biol 7(7):a008144
CrossRef
Google scholar
|
[21] |
John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2(11):e363
CrossRef
Google scholar
|
[22] |
Jung I, Aguiar RC (2009) microRNA-155 expression and outcome in diffuse large B-cell lymphoma. Br J Haematol 144(1):138–140
CrossRef
Google scholar
|
[23] |
Khan S, Wall D, Curran C, Newell J, Kerin MJ, Dwyer RM (2015) microRNA-10a is reduced in breast cancer and regulated in part through retinoic acid. BMC Cancer 15(1):345
CrossRef
Google scholar
|
[24] |
Koscianska E, Krzyzosiak WJ (2014) Current understanding of the role of microRNAs in spinocerebellar ataxias. Cerebellum Ataxias 1:7
CrossRef
Google scholar
|
[25] |
Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500
CrossRef
Google scholar
|
[26] |
Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11 (9):597–610
CrossRef
Google scholar
|
[27] |
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798
CrossRef
Google scholar
|
[28] |
Parekh S, Polo JM, Shaknovich R, Juszczynski P, Lev P, Ranuncolo SM, Yin Y, Klein U, Cattoretti G, Dalla Favera R, Shipp MA, Melnick A (2007) BCL6 programs lymphoma cells for survival and differentiation through distinct biochemical mechanisms. Blood 110(6):2067–2074
CrossRef
Google scholar
|
[29] |
Parekh S, Prive G, Melnick A (2008) Therapeutic targeting of the BCL6 oncogene for diffuse large B-cell lymphomas. Leuk Lymphoma 49(5):874–882
CrossRef
Google scholar
|
[30] |
Pillai RS, Bhattacharyya SN, Filipowicz W (2007) Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17(3):118–126
CrossRef
Google scholar
|
[31] |
Polo JM, Dell’Oso T, Ranuncolo SM, Cerchietti L, Beck D, Da Silva GF, Prive GG, Licht JD, Melnick A (2004) Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat Med 10(12):1329–1335
CrossRef
Google scholar
|
[32] |
Roehle A, Hoefig KP, Repsilber D, Thorns C, Ziepert M, Wesche KO, Thiere M, Loeffler M, Klapper W, Pfreundschuh M, Matolcsy A, Bernd HW, Reiniger L, Merz H, Feller AC (2008) microRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas. Br J Haematol 142(5):732–744
CrossRef
Google scholar
|
[33] |
Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatinmodifying drugs in human cancer cells. Cancer Cell 9(6):435–443
CrossRef
Google scholar
|
[34] |
Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM (2000) BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13(2):199–212
CrossRef
Google scholar
|
[35] |
Takahashi H, Kanno T, Nakayamada S, Hirahara K, Sciume G, Muljo SA, Kuchen S, Casellas R, Wei L, Kanno Y, O’Shea JJ (2012) TGF-beta and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat Immunol 13(6):587–595
CrossRef
Google scholar
|
[36] |
Van Den Neste E, Schmitz N, Mounier N, Gill D, Linch D, Trneny M, Milpied N, Radford J, Ketterer N, Shpilberg O, Duhrsen U, Ma D, Briere J, Thieblemont C, Salles G, Moskowitz CH, Glass B, Gisselbrecht C (2015) Outcome of patients with relapsed diffuse large B-cell lymphoma who fail second-line salvage regimens in the International CORAL study. Bone Marrow Transplant. 51 (1):51–57
CrossRef
Google scholar
|
[37] |
Wang K, Xu Z, Wang N, Xu T, Zhu M (2014) microRNA and gene networks in human diffuse large B-cell lymphoma. Oncol Lett 8 (5):2225–2232
CrossRef
Google scholar
|
[38] |
Westin JR, Fayad LE (2009) Beyond R-CHOP and the IPI in largecell lymphoma: molecular markers as an opportunity for stratification. Curr Hematol Malig Rep 4(4):218–224
CrossRef
Google scholar
|
[39] |
Winter JN, Weller EA, Horning SJ, Krajewska M, Variakojis D, Habermann TM, Fisher RI, Kurtin PJ, Macon WR, Chhanabhai M, Felgar RE, Hsi ED, Medeiros LJ, Weick JK, Reed JC, Gascoyne RD (2006) Prognostic significance of Bcl-6 protein expression in DLBCL treated with CHOP or R-CHOP: a prospective correlative study. Blood 107(11):4207–4213
CrossRef
Google scholar
|
[40] |
Yan Y, Luo YC, Wan HY, Wang J, Zhang PP, Liu M, Li X, Li S, Tang H (2013) microRNA-10a is involved in the metastatic process by regulating Eph tyrosine kinase receptor A4-mediated epithelialmesenchymal transition and adhesion in hepatoma cells. Hepatology 57(2):667–677
CrossRef
Google scholar
|
[41] |
Yatomi Y (2012) From FAB classification to WHO classification of tumors of hematopoietic and lymphoid tissue. Rinsho Byori 60 (6):550–552
|
[42] |
Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL, Srivastava M, Linterman M, Zheng L, Simpson N, Ellyard JI, Parish IA, Ma CS, Li QJ, Parish CR, Mackay CR, Vinuesa CG (2009) The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31(3):457–468
CrossRef
Google scholar
|
[43] |
Zeng T, Li G (2014) microRNA10a enhances the metastatic potential of cervical cancer cells by targeting phosphatase and tensin homologue. Mol Med Rep 10(3):1377–1382
|
[44] |
Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, Liang S, Naylor TL, Barchetti A, Ward MR, Yao G, Medina A, O’Brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty PA, Weber BL, Coukos G (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103(24):9136–9141
CrossRef
Google scholar
|
/
〈 | 〉 |