Amazing structure of respirasome: unveiling the secrets of cell respiration
Received date: 15 Sep 2016
Accepted date: 28 Sep 2016
Published date: 24 Jan 2017
Copyright
Respirasome, a huge molecular machine that carries out cellular respiration, has gained growing attention since its discovery, because respiration is the most indispensable biological process in almost all living creatures. The concept of respirasome has renewed our understanding of the respiratory chain organization, and most recently, the structure of respirasome solved by Yang’s group from Tsinghua University (Gu et al.Nature 237(7622):639–643, 2016) firstly presented the detailed interactions within this huge molecular machine, and provided important information for drug design and screening. However, the study of cellular respiration went through a long history. Here, we briefly showed the detoured history of respiratory chain investigation, and then described the amazing structure of respirasome.
Runyu Guo , Jinke Gu , Meng Wu , Maojun Yang . Amazing structure of respirasome: unveiling the secrets of cell respiration[J]. Protein & Cell, 2016 , 7(12) : 854 -865 . DOI: 10.1007/s13238-016-0329-7
1 |
Acin-Perez R, Enriquez JA (2014) The function of the respiratory supercomplexes: the plasticity model. Biochim Biophys Acta 1837:444–450. doi:10.1016/j.bbabio.2013.12.009
|
2 |
Acin-Perez R
|
3 |
Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539. doi:10.1016/j.molcel.2008.10.021
|
4 |
Allen RD, Schroeder CC, Fok AK (1989) An investigation of mitochondrial inner membranes by rapid-freeze deep-etch techniques. J Cell Biol 108:2233–2240
|
5 |
Althoff T, Mills DJ, Popot JL, Kuhlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J30:4652–4664. doi:10.1038/ emboj.2011.324
|
6 |
Anderson CM
|
7 |
Baradaran R, Berrisford JM, Minhas GS, Sazanov LA (2013) Crystal structure of the entire respiratory complex I. Nature 494:443–448. doi:10.1038/nature11871
|
8 |
Baranova EA, Holt PJ, Sazanov LA (2007) Projection structure of the membrane domainof Escherichia coli respiratory complexI at8A resolution. J Mol Biol 366:140–154. doi:10.1016/j.jmb.2006.11.026
|
9 |
Barcena C, Martinez MA, Ortega MP, Munoz HG, Sarraga GU (2010) Mitochondria with tubulovesicular cristae in renal oncocytomas. Ultrastruct Pathol 34:315–320. doi:10.3109/01913123. 2010.506021
|
10 |
Benard G
|
11 |
Berrisford JM, Sazanov LA (2009) Structural basis for the mechanism of respiratory complex I. J Biol Chem 284:29773–29783. doi:10.1074/jbc.M109.032144
|
12 |
Blaza JN, Serreli R, Jones AJ, Mohammed K, Hirst J(2014) Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes. Proc Natl Acad Sci U S A 111:15735–15740. doi:10.1073/pnas. 1413855111
|
13 |
Bultema JB, Braun HP, Boekema EJ, Kouril R(2009) Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato. Biochim Biophys Acta 1787:60–67. doi:10.1016/j.bbabio.2008.10.010
|
14 |
Chance B (1950) Oxidase activity–light absorption relationships in cytochrome system of heart muscle preparations. Biol Bull 99:318
|
15 |
Chance B, Estabrook RW, Lee CP (1963) ElectronTransportin the Oxysome. Science 140:379–380. doi:10.1126/science.140.3565. 379-c
|
16 |
Chazotte B, Hackenbrock CR (1991) Lateral diffusion of redox components in the mitochondrial inner membrane is unaffected by inner membrane folding and matrix density. J Biol Chem 266:5973–5979
|
17 |
Chen C, Chen Y, Guan MX (2015) A peep into mitochondrial disorder: multifaceted from mitochondrial DNA mutations to nuclear gene modulation. Protein Cell 6:862–870. doi:10.1007/ s13238-015-0175-z
|
18 |
Cogliati S
|
19 |
Cogliati S, Enriquez JA, Scorrano L (2016) Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem Sci 41:261–273. doi:10.1016/j.tibs.2016.01.001
|
20 |
Daoud R, Forget L, Lang BF (2012) Yeast mitochondrial RNase P, RNaseZ and the RNA degradosome are partofa stable super-complex. Nucleic Acids Res 40:1728–1736. doi:10.1093/nar/ gkr941
|
21 |
Davies KM
|
22 |
Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39. doi:10.1016/j.bbabio.2004.09.009
|
23 |
Diaz F, Fukui H, Garcia S, Moraes CT (2006) Cytochromec oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol Cell Biol 26:4872–4881. doi:10.1128/ MCB.01767-05
|
24 |
Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun HP (2005) Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci USA 102:3225–3229. doi:10.1073/pnas.0408870102
|
25 |
Dudkina NV, Heinemeyer J, Sunderhaus S, Boekema EJ, Braun HP (2006) Respiratory chain supercomplexes in the plant mitochondrial membrane. Trends Plant Sci 11:232–240. doi:10.1016/j. tplants.2006.03.007
|
26 |
Dudkina NV, Kudryashev M, Stahlberg H, Boekema EJ (2011) Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography. Proc Natl Acad Sci USA 108:15196–15200. doi:10.1073/pnas.1107819108
|
27 |
Dudkina NV, Folea IM, Boekema EJ (2015) Towards structural and functional characterization of photosynthetic and mitochondrial supercomplexes. Micron 72:39–51. doi:10.1016/j.micron.2015.03.002
|
28 |
Efremov RG, Sazanov LA (2011) Structure ofthe membrane domain of respiratory complex I. Nature 476:414–420. doi:10.1038/ nature10330
|
29 |
Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445. doi:10.1038/ nature09066
|
30 |
Enriquez JA (2016) Supramolecular organization of respiratory complexes. Annu Rev Physiol 78:533–561. doi:10.1146/ annurev-physiol-021115-105031
|
31 |
Enriquez JA, Lenaz G(2014) Coenzymeqand the respiratory chain: coenzyme q pool and mitochondrial supercomplexes. Mol Syndromol 5:119–140. doi:10.1159/000363364
|
32 |
Ernster L, Schatz G (1981) Mitochondria:a historical review. J Cell Biol 91:227s–255s
|
33 |
Eubel H, Jansch L, Braun HP (2003) New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol 133:274–286
|
34 |
Eubel H, Heinemeyer J, Sunderhaus S, Braun HP (2004) Respiratory chain supercomplexes in plant mitochondria. Plant Physiol Biochem 42:937–942. doi:10.1016/j.plaphy.2004.09.010
|
35 |
Feng J, Lu S, Ding Y, Zheng M, Wang X (2016) Homocysteine activates Tcells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration. Protein Cell 7:391–402. doi:10.1007/s13238-016-0245-x
|
36 |
Fiedorczuk K
|
37 |
Frenzel M, Rommelspacher H, Sugawa MD, Dencher NA (2010) Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex. Exp Gerontol 45:563–572. doi:10.1016/ j.exger.2010.02.003
|
38 |
Gao X
|
39 |
Gao X
|
40 |
Genova ML (2014) Electron Transport in the Mitochondrial Respiratory Chain. Struct Basis Biol Energy Gener 39:401–417. doi:10. 1007/978-94-017-8742-0_21
|
41 |
Genova ML, Lenaz G (2014) Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta 1837:427–443. doi:10.1016/j.bbabio.2013.11.002
|
42 |
Gomez LA, Monette JS, Chavez JD, Maier CS, Hagen TM (2009) Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart. Arch Biochem Biophys 490:30–35. doi:10.1016/j.abb.2009.08.002
|
43 |
Green DE, Tzagoloff A (1966) The mitochondrial electron transfer chain. Arch Biochem Biophys 116:293–304
|
44 |
Gu J
|
45 |
Gupte S
|
46 |
Hackenbrock CR, Schneider H, Lemasters JJ, Hochli M (1980) Relationships between bilayer lipid, motional freedom of oxidoreductase components, and electron transfer in the mitochondrial inner membrane. Adv Exp Med Biol 132:245–263
|
47 |
Hackenbrock CR, Gupte S, Wu ES, Jacobson K (1984) Lateral diffusion, collision and efficiency of oxidation-reduction components in mitochondrial electron transport. Biochem Soc Trans 12:402–403
|
48 |
Hackenbrock CR, Chazotte B, Gupte SS (1986) The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 18:331–368
|
49 |
Hatefi Y, Haavik AG, Fowler LR, Griffiths DE (1962) Studies on the electron transfer system. XLII. Reconstitution of the electron transfer system. J Biol Chem 237:2661–2669
|
50 |
Heinemeyer J, Braun HP, Boekema EJ, Kouril R (2007) A structural model of the cytochrome C reductase/oxidase supercomplex from yeast mitochondria. JBiol Chem 282:12240–12248. doi:10. 1074/jbc.M610545200
|
51 |
Hochli M, Hackenbrock CR (1976) Fluidity in mitochondrial membranes: thermotropic lateral translational motion of intramembrane particles. Proc Natl Acad Sci USA 73:1636–1640
|
52 |
Hochli M, Hackenbrock CR (1979) Lateral translational diffusion of cytochrome c oxidase in the mitochondrial energy-transducing membrane. Proc Natl Acad Sci USA 76:1236–1240
|
53 |
Hofmann AD
|
54 |
Huang LS
|
55 |
Ikeda K, Shiba S, Horie-Inoue K, Shimokata K, Inoue S (2013) A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle. Nat Commun 4:2147. doi:10.1038/ncomms3147
|
56 |
Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structureat2.8A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669. doi:10.1038/376660a0
|
57 |
Iwata S
|
58 |
Johnson GN (2011) Physiology of PSI cyclic electron transport in higher plants. Biochim Biophys Acta 1807:384–389. doi:10.1016/ j.bbabio.2010.11.009
|
59 |
Kaila VR, Sharma V, Wikstrom M (2011) The identity of the transient proton loading site of the proton-pumping mechanism of cytochrome c oxidase. Biochim Biophys Acta 1807:80–84. doi:10.1016/j.bbabio.2010.08.014
|
60 |
Kannt A, Lancaster CR, Michel H (1998) The coupling of electron transfer and proton translocation: electrostatic calculations on Paracoccus denitrificans cytochrome c oxidase. Biophys J74:708–721. doi:10.1016/S0006-3495(98)73996-7
|
61 |
Keilin D, Hartree EF (1947) Activity of the cytochrome system in heart muscle preparations. Biochem J41:500–502
|
62 |
Kouril R, Dekker JP, Boekema EJ (2012) Supramolecular organization of photosystem II in green plants. Biochim Biophys Acta 1817:2–12. doi:10.1016/j.bbabio.2011.05.024
|
63 |
Lamantea E
|
64 |
Lange C, Hunte C (2002) Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c. Proc Natl Acad Sci USA 99:2800–2805. doi:10.1073/pnas.052704699
|
65 |
Lapuente-Brun E
|
66 |
Lass A, Sohal RS (1999) Comparisons of coenzyme Q bound to mitochondrial membrane proteins among different mammalian species. Free Radic Biol Med 27:220–226
|
67 |
Lass A, Kwong L, Sohal RS (1999a) Mitochondrial coenzyme Q content and aging. Biofactors 9:199–205
|
68 |
Lass A, Forster MJ, Sohal RS (1999b) Effects of coenzyme Q10 and alpha-tocopherol administration on their tissue levels in the mouse: elevation of mitochondrial alpha-tocopherol by coenzyme Q10. Free Radic Biol Med 26:1375–1382
|
69 |
Lenaz G, Genova ML (2010) Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12:961–1008. doi:10.1089/ ars.2009.2704
|
70 |
Liao Y
|
71 |
Liesa M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17:491–506. doi:10.1016/j.cmet.2013.03.002
|
72 |
Livingston AK, Cruz JA, Kohzuma K, Dhingra A, Kramer DM (2010) An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell 22:221–233. doi:10.1105/tpc.109. 071084
|
73 |
Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML (2013) Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal 19:1469–1480. doi:10.1089/ars.2012.4845
|
74 |
Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transferbya chemi-osmotic typeof mechanism. Nature 191:144–148
|
75 |
Moreno-Lastres D
|
76 |
Moreno-Loshuertos R, Enriquez JA (2016) Respiratory supercomplexes and the functional segmentation of the CoQ pool. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2016.04.018
|
77 |
Morgan DJ, Sazanov LA (2008) Three-dimensional structure of respiratory complexIfrom Escherichia coli in ice in the presence of nucleotides. Biochim Biophys Acta 1777:711–718. doi:10. 1016/j.bbabio.2008.03.023
|
78 |
Muhleip AW
|
79 |
Nicastro D, Frangakis AS, Typke D, Baumeister W (2000) Cryoelectron tomography of neurospora mitochondria. J Struct Biol 129:48–56. doi:10.1006/jsbi.1999.4204
|
80 |
Nubel E, Wittig I, Kerscher S, Brandt U, Schagger H (2009) Two-dimensional native electrophoretic analysis of respiratory super-complexes from Yarrowia lipolytica. Proteomics 9:2408–2418. doi:10.1002/pmic.200800632
|
81 |
Ostermeier C, Harrenga A, Ermler U, Michel H (1997) Structure at 2.7 A resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc Natl Acad SciUSA 94:10547–10553
|
82 |
Palsdottir H, Lojero CG, Trumpower BL, Hunte C(2003) Structureof the yeast cytochrome bc1 complex with a hydroxyquinone anion Qo site inhibitor bound. J Biol Chem 278:31303–31311. doi:10. 1074/jbc.M302195200
|
83 |
Perkins G
|
84 |
Pfeiffer K
|
85 |
Ramirez-Aguilar SJ
|
86 |
Riva A, Loffredo F, Uccheddu A, Riva FT, Tandler B (2003) Mitochondria of human adrenal cortex have tubular cristae with bulbous tips. J Clin Endocrinol Metab 88:1903–1906. doi:10. 1210/jc.2002-030013
|
87 |
Riva A
|
88 |
Rochaix JD (2014) Regulation and dynamics of the light-harvesting system. Annu Rev Plant Biol 65:287–309. doi:10.1146/annurevarplant-050213-040226
|
89 |
Sazanov LA (2007) Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 46:2275–2288. doi:10.1021/bi602508x
|
90 |
Sazanov LA (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 16:375–388. doi:10.1038/nrm3997
|
91 |
Sazanov LA, Hinchliffe P(2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436. doi:10.1126/science.1123809
|
92 |
Schafer E
|
93 |
Schagger H (2001) Respiratory chain supercomplexes. IUBMB Life 52:119–128. doi:10.1080/15216540152845911
|
94 |
Schagger H(2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555:154–159
|
95 |
Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J19:1777–1783. doi:10.1093/emboj/19.8.1777
|
96 |
Schagger H, Pfeiffer K (2001) The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 276:37861–37867. doi:10.1074/jbc.M106474200
|
97 |
Schneider H, Lemasters JJ, Hochli M, Hackenbrock CR (1980) Liposome-mitochondrial inner membrane fusion. Lateral diffusion of integral electron transfer components. J Biol Chem 255:3748–3756
|
98 |
Schneider H, Lemasters JJ, Hackenbrock CR (1982a) Lateral diffusion of ubiquinone during electron transfer in phospholipidand ubiquinone-enriched mitochondrial membranes. JBiol Chem 257:10789–10793
|
99 |
Schneider H, Hochli M, Hackenbrock CR (1982b) Relationship between the density distribution of intramembrane particles and electron transfer in the mitochondrial inner membrane as revealedby cholesterol incorporation. J Cell Biol 94:387–393
|
100 |
Sousa PM
|
101 |
Strauss M, Hofhaus G, Schroder RR, Kuhlbrandt W (2008) Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J27:1154–1160. doi:10.1038/emboj.2008.35
|
102 |
Stroh A
|
103 |
Stroud DA, Ryan MT (2013) Mitochondria: organization of respiratory chain complexes becomes cristae-lized. Curr Biol 23:R969–R971. doi:10.1016/j.cub.2013.09.035
|
104 |
Stuart RA (2008) Supercomplex organization of the oxidative phosphorylation enzymes in yeast mitochondria. J Bioenerg Biomembr 40:411–417. doi:10.1007/s10863-008-9168-4
|
105 |
Sun F
|
106 |
Sun D, Li B, Qiu R, Fang H, Lyu J (2016) Cell Type-Specific Modulation of Respiratory Chain Supercomplex Organization. Int J Mol Sci. doi:10.3390/ijms17060926
|
107 |
Tsukihara T
|
108 |
Tsukihara T
|
109 |
Tsukihara T
|
110 |
Vartak R, Porras CA, Bai Y (2013) Respiratory supercomplexes: structure, function and assembly. Protein Cell 4:582–590. doi:10.1007/s13238-013-3032-y
|
111 |
Vempati UD, Han X, Moraes CT (2009) Lack of cytochrome c in mouse fibroblasts disrupts assembly/stability of respiratory complexes I and IV. J Biol Chem 284:4383–4391. doi:10.1074/jbc.M805972200
|
112 |
Vinothkumar KR, Zhu J, Hirst J (2014) Architecture of mammalian respiratory complex I. Nature 515:80–84. doi:10.1038/nature13686
|
113 |
Wang X
|
114 |
Wenz T
|
115 |
Wittig I, Braun HP, Schagger H (2006a) Blue native PAGE. Nat Protoc 1:418–428. doi:10.1038/nprot.2006.62
|
116 |
Wittig I, Carrozzo R, Santorelli FM, Schagger H (2006b) Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1757:1066–1072. doi:10.1016/j.bbabio.2006.05.006
|
117 |
Xia D
|
118 |
Yankovskaya V
|
119 |
Yoshikawa S
|
120 |
Zhang Z
|
121 |
Zhang M, Mileykovskaya E, Dowhan W (2005) Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J Biol Chem 280:29403–29408. doi:10.1074/jbc.M504955200
|
122 |
Zhu J, Vinothkumar KR, Hirst J (2016) Structure ofmammalian respiratory complex I. Nature 536:354–358. doi:10.1038/nature19095
|
/
〈 | 〉 |