Amazing structure of respirasome: unveiling the secrets of cell respiration

Runyu Guo, Jinke Gu, Meng Wu, Maojun Yang

PDF(2495 KB)
PDF(2495 KB)
Protein Cell ›› 2016, Vol. 7 ›› Issue (12) : 854-865. DOI: 10.1007/s13238-016-0329-7
REVIEW
REVIEW

Amazing structure of respirasome: unveiling the secrets of cell respiration

Author information +
History +

Abstract

Respirasome, a huge molecular machine that carries out cellular respiration, has gained growing attention since its discovery, because respiration is the most indispensable biological process in almost all living creatures. The concept of respirasome has renewed our understanding of the respiratory chain organization, and most recently, the structure of respirasome solved by Yang’s group from Tsinghua University (Gu et al.Nature 237(7622):639–643, 2016) firstly presented the detailed interactions within this huge molecular machine, and provided important information for drug design and screening. However, the study of cellular respiration went through a long history. Here, we briefly showed the detoured history of respiratory chain investigation, and then described the amazing structure of respirasome.

Keywords

respirasome structure / supercomplexes organization / cellular respiration / respiratory complexes / megacomplex

Cite this article

Download citation ▾
Runyu Guo, Jinke Gu, Meng Wu, Maojun Yang. Amazing structure of respirasome: unveiling the secrets of cell respiration. Protein Cell, 2016, 7(12): 854‒865 https://doi.org/10.1007/s13238-016-0329-7

References

[1]
Acin-Perez R, Enriquez JA (2014) The function of the respiratory supercomplexes: the plasticity model. Biochim Biophys Acta 1837:444–450. doi:10.1016/j.bbabio.2013.12.009
CrossRef Google scholar
[2]
Acin-Perez R (2004) Respiratory complex III is required to maintain complexIin mammalian mitochondria. Mol Cell 13:805–815
CrossRef Google scholar
[3]
Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539. doi:10.1016/j.molcel.2008.10.021
CrossRef Google scholar
[4]
Allen RD, Schroeder CC, Fok AK (1989) An investigation of mitochondrial inner membranes by rapid-freeze deep-etch techniques. J Cell Biol 108:2233–2240
CrossRef Google scholar
[5]
Althoff T, Mills DJ, Popot JL, Kuhlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J30:4652–4664. doi:10.1038/ emboj.2011.324
CrossRef Google scholar
[6]
Anderson CM (2015) Dependence of brown adipose tissue function on CD36-mediated coenzyme Q uptake. Cell Rep 10:505–515. doi:10.1016/j.celrep.2014.12.048
CrossRef Google scholar
[7]
Baradaran R, Berrisford JM, Minhas GS, Sazanov LA (2013) Crystal structure of the entire respiratory complex I. Nature 494:443–448. doi:10.1038/nature11871
CrossRef Google scholar
[8]
Baranova EA, Holt PJ, Sazanov LA (2007) Projection structure of the membrane domainof Escherichia coli respiratory complexI at8A resolution. J Mol Biol 366:140–154. doi:10.1016/j.jmb.2006.11.026
CrossRef Google scholar
[9]
Barcena C, Martinez MA, Ortega MP, Munoz HG, Sarraga GU (2010) Mitochondria with tubulovesicular cristae in renal oncocytomas. Ultrastruct Pathol 34:315–320. doi:10.3109/01913123. 2010.506021
[10]
Benard G (2008) Functional dynamic compartmentalization of respiratory chain intermediate substrates: implications for the control of energy production and mitochondrial diseases. Int J Biochem Cell Biol 40:1543–1554. doi:10.1016/j.biocel.2007.11. 023
[11]
Berrisford JM, Sazanov LA (2009) Structural basis for the mechanism of respiratory complex I. J Biol Chem 284:29773–29783. doi:10.1074/jbc.M109.032144
CrossRef Google scholar
[12]
Blaza JN, Serreli R, Jones AJ, Mohammed K, Hirst J(2014) Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes. Proc Natl Acad Sci U S A 111:15735–15740. doi:10.1073/pnas. 1413855111
[13]
Bultema JB, Braun HP, Boekema EJ, Kouril R(2009) Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato. Biochim Biophys Acta 1787:60–67. doi:10.1016/j.bbabio.2008.10.010
CrossRef Google scholar
[14]
Chance B (1950) Oxidase activity–light absorption relationships in cytochrome system of heart muscle preparations. Biol Bull 99:318
[15]
Chance B, Estabrook RW, Lee CP (1963) ElectronTransportin the Oxysome. Science 140:379–380. doi:10.1126/science.140.3565. 379-c
[16]
Chazotte B, Hackenbrock CR (1991) Lateral diffusion of redox components in the mitochondrial inner membrane is unaffected by inner membrane folding and matrix density. J Biol Chem 266:5973–5979
[17]
Chen C, Chen Y, Guan MX (2015) A peep into mitochondrial disorder: multifaceted from mitochondrial DNA mutations to nuclear gene modulation. Protein Cell 6:862–870. doi:10.1007/ s13238-015-0175-z
[18]
Cogliati S (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155:160–171. doi:10.1016/j.cell.2013.08.032
CrossRef Google scholar
[19]
Cogliati S, Enriquez JA, Scorrano L (2016) Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem Sci 41:261–273. doi:10.1016/j.tibs.2016.01.001
CrossRef Google scholar
[20]
Daoud R, Forget L, Lang BF (2012) Yeast mitochondrial RNase P, RNaseZ and the RNA degradosome are partofa stable super-complex. Nucleic Acids Res 40:1728–1736. doi:10.1093/nar/ gkr941
[21]
Davies KM (2011) Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc Natl Acad Sci USA 108:14121–14126. doi:10.1073/pnas.1103621108
CrossRef Google scholar
[22]
Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39. doi:10.1016/j.bbabio.2004.09.009
CrossRef Google scholar
[23]
Diaz F, Fukui H, Garcia S, Moraes CT (2006) Cytochromec oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol Cell Biol 26:4872–4881. doi:10.1128/ MCB.01767-05
[24]
Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun HP (2005) Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci USA 102:3225–3229. doi:10.1073/pnas.0408870102
CrossRef Google scholar
[25]
Dudkina NV, Heinemeyer J, Sunderhaus S, Boekema EJ, Braun HP (2006) Respiratory chain supercomplexes in the plant mitochondrial membrane. Trends Plant Sci 11:232–240. doi:10.1016/j. tplants.2006.03.007
[26]
Dudkina NV, Kudryashev M, Stahlberg H, Boekema EJ (2011) Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography. Proc Natl Acad Sci USA 108:15196–15200. doi:10.1073/pnas.1107819108
CrossRef Google scholar
[27]
Dudkina NV, Folea IM, Boekema EJ (2015) Towards structural and functional characterization of photosynthetic and mitochondrial supercomplexes. Micron 72:39–51. doi:10.1016/j.micron.2015.03.002
CrossRef Google scholar
[28]
Efremov RG, Sazanov LA (2011) Structure ofthe membrane domain of respiratory complex I. Nature 476:414–420. doi:10.1038/ nature10330
[29]
Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445. doi:10.1038/ nature09066
CrossRef Google scholar
[30]
Enriquez JA (2016) Supramolecular organization of respiratory complexes. Annu Rev Physiol 78:533–561. doi:10.1146/ annurev-physiol-021115-105031
CrossRef Google scholar
[31]
Enriquez JA, Lenaz G(2014) Coenzymeqand the respiratory chain: coenzyme q pool and mitochondrial supercomplexes. Mol Syndromol 5:119–140. doi:10.1159/000363364
[32]
Ernster L, Schatz G (1981) Mitochondria:a historical review. J Cell Biol 91:227s–255s
CrossRef Google scholar
[33]
Eubel H, Jansch L, Braun HP (2003) New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol 133:274–286
CrossRef Google scholar
[34]
Eubel H, Heinemeyer J, Sunderhaus S, Braun HP (2004) Respiratory chain supercomplexes in plant mitochondria. Plant Physiol Biochem 42:937–942. doi:10.1016/j.plaphy.2004.09.010
CrossRef Google scholar
[35]
Feng J, Lu S, Ding Y, Zheng M, Wang X (2016) Homocysteine activates Tcells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration. Protein Cell 7:391–402. doi:10.1007/s13238-016-0245-x
CrossRef Google scholar
[36]
Fiedorczuk K (2016) Atomic structure of the entire mammalian mitochondrial complex I. Nature. doi:10.1038/nature19794
CrossRef Google scholar
[37]
Frenzel M, Rommelspacher H, Sugawa MD, Dencher NA (2010) Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex. Exp Gerontol 45:563–572. doi:10.1016/ j.exger.2010.02.003
CrossRef Google scholar
[38]
Gao X(2002) The crystal structureof mitochondrial cytochrome bc1 in complex with famoxadone: the role of aromatic-aromatic interaction in inhibition. Biochemistry 41:11692–11702
CrossRef Google scholar
[39]
Gao X (2003) Structuralbasisforthe quinone reductioninthebc1 complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc1 with bound substrate and inhibitors at the Qi site. Biochemistry 42:9067–9080. doi:10.1021/bi0341814
CrossRef Google scholar
[40]
Genova ML (2014) Electron Transport in the Mitochondrial Respiratory Chain. Struct Basis Biol Energy Gener 39:401–417. doi:10. 1007/978-94-017-8742-0_21
CrossRef Google scholar
[41]
Genova ML, Lenaz G (2014) Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta 1837:427–443. doi:10.1016/j.bbabio.2013.11.002
CrossRef Google scholar
[42]
Gomez LA, Monette JS, Chavez JD, Maier CS, Hagen TM (2009) Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart. Arch Biochem Biophys 490:30–35. doi:10.1016/j.abb.2009.08.002
CrossRef Google scholar
[43]
Green DE, Tzagoloff A (1966) The mitochondrial electron transfer chain. Arch Biochem Biophys 116:293–304
CrossRef Google scholar
[44]
Gu J (2016) The architecture of the mammalian respirasome. Nature 537(7622):639–643. doi:10.1038/nature19359
CrossRef Google scholar
[45]
Gupte S(1984) Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidation-reduction components. Proc Natl Acad Sci USA 81:2606–2610
CrossRef Google scholar
[46]
Hackenbrock CR, Schneider H, Lemasters JJ, Hochli M (1980) Relationships between bilayer lipid, motional freedom of oxidoreductase components, and electron transfer in the mitochondrial inner membrane. Adv Exp Med Biol 132:245–263
CrossRef Google scholar
[47]
Hackenbrock CR, Gupte S, Wu ES, Jacobson K (1984) Lateral diffusion, collision and efficiency of oxidation-reduction components in mitochondrial electron transport. Biochem Soc Trans 12:402–403
CrossRef Google scholar
[48]
Hackenbrock CR, Chazotte B, Gupte SS (1986) The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 18:331–368
CrossRef Google scholar
[49]
Hatefi Y, Haavik AG, Fowler LR, Griffiths DE (1962) Studies on the electron transfer system. XLII. Reconstitution of the electron transfer system. J Biol Chem 237:2661–2669
[50]
Heinemeyer J, Braun HP, Boekema EJ, Kouril R (2007) A structural model of the cytochrome C reductase/oxidase supercomplex from yeast mitochondria. JBiol Chem 282:12240–12248. doi:10. 1074/jbc.M610545200
CrossRef Google scholar
[51]
Hochli M, Hackenbrock CR (1976) Fluidity in mitochondrial membranes: thermotropic lateral translational motion of intramembrane particles. Proc Natl Acad Sci USA 73:1636–1640
CrossRef Google scholar
[52]
Hochli M, Hackenbrock CR (1979) Lateral translational diffusion of cytochrome c oxidase in the mitochondrial energy-transducing membrane. Proc Natl Acad Sci USA 76:1236–1240
CrossRef Google scholar
[53]
Hofmann AD (2012) OXPHOS supercomplexes as a hallmark of the mitochondrial phenotype of adipogenic differentiated human MSCs. PLoS One 7:e35160. doi:10.1371/journal.pone. 0035160
[54]
Huang LS (2006) 3-nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. J Biol Chem 281:5965–5972. doi:10. 1074/jbc.M511270200
[55]
Ikeda K, Shiba S, Horie-Inoue K, Shimokata K, Inoue S (2013) A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle. Nat Commun 4:2147. doi:10.1038/ncomms3147
CrossRef Google scholar
[56]
Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structureat2.8A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669. doi:10.1038/376660a0
CrossRef Google scholar
[57]
Iwata S (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281:64–71
CrossRef Google scholar
[58]
Johnson GN (2011) Physiology of PSI cyclic electron transport in higher plants. Biochim Biophys Acta 1807:384–389. doi:10.1016/ j.bbabio.2010.11.009
CrossRef Google scholar
[59]
Kaila VR, Sharma V, Wikstrom M (2011) The identity of the transient proton loading site of the proton-pumping mechanism of cytochrome c oxidase. Biochim Biophys Acta 1807:80–84. doi:10.1016/j.bbabio.2010.08.014
CrossRef Google scholar
[60]
Kannt A, Lancaster CR, Michel H (1998) The coupling of electron transfer and proton translocation: electrostatic calculations on Paracoccus denitrificans cytochrome c oxidase. Biophys J74:708–721. doi:10.1016/S0006-3495(98)73996-7
CrossRef Google scholar
[61]
Keilin D, Hartree EF (1947) Activity of the cytochrome system in heart muscle preparations. Biochem J41:500–502
CrossRef Google scholar
[62]
Kouril R, Dekker JP, Boekema EJ (2012) Supramolecular organization of photosystem II in green plants. Biochim Biophys Acta 1817:2–12. doi:10.1016/j.bbabio.2011.05.024
CrossRef Google scholar
[63]
Lamantea E (2002)Anovel nonsense mutation (Q352X)in the mitochondrial cytochrome b gene associated with a combined deficiency of complexesI and III. Neuromuscul Disord 12:49–52
CrossRef Google scholar
[64]
Lange C, Hunte C (2002) Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c. Proc Natl Acad Sci USA 99:2800–2805. doi:10.1073/pnas.052704699
CrossRef Google scholar
[65]
Lapuente-Brun E (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340:1567–1570. doi:10.1126/science.1230381
CrossRef Google scholar
[66]
Lass A, Sohal RS (1999) Comparisons of coenzyme Q bound to mitochondrial membrane proteins among different mammalian species. Free Radic Biol Med 27:220–226
CrossRef Google scholar
[67]
Lass A, Kwong L, Sohal RS (1999a) Mitochondrial coenzyme Q content and aging. Biofactors 9:199–205
CrossRef Google scholar
[68]
Lass A, Forster MJ, Sohal RS (1999b) Effects of coenzyme Q10 and alpha-tocopherol administration on their tissue levels in the mouse: elevation of mitochondrial alpha-tocopherol by coenzyme Q10. Free Radic Biol Med 26:1375–1382
CrossRef Google scholar
[69]
Lenaz G, Genova ML (2010) Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12:961–1008. doi:10.1089/ ars.2009.2704
CrossRef Google scholar
[70]
Liao Y (2015) Mitochondrial calcium uniporter protein MCU is involved in oxidative stress-induced cell death. Protein Cell 6:434–442. doi:10.1007/s13238-015-0144-6
CrossRef Google scholar
[71]
Liesa M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17:491–506. doi:10.1016/j.cmet.2013.03.002
CrossRef Google scholar
[72]
Livingston AK, Cruz JA, Kohzuma K, Dhingra A, Kramer DM (2010) An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell 22:221–233. doi:10.1105/tpc.109. 071084
[73]
Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML (2013) Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal 19:1469–1480. doi:10.1089/ars.2012.4845
CrossRef Google scholar
[74]
Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transferbya chemi-osmotic typeof mechanism. Nature 191:144–148
CrossRef Google scholar
[75]
Moreno-Lastres D (2012) Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab 15:324–335. doi:10.1016/j.cmet.2012.01.015
CrossRef Google scholar
[76]
Moreno-Loshuertos R, Enriquez JA (2016) Respiratory supercomplexes and the functional segmentation of the CoQ pool. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2016.04.018
CrossRef Google scholar
[77]
Morgan DJ, Sazanov LA (2008) Three-dimensional structure of respiratory complexIfrom Escherichia coli in ice in the presence of nucleotides. Biochim Biophys Acta 1777:711–718. doi:10. 1016/j.bbabio.2008.03.023
[78]
Muhleip AW (2016) Helical arrays of U-shaped ATP synthase dimers form tubular cristae in ciliate mitochondria. Proc Natl Acad SciUSA 113:8442–8447. doi:10.1073/pnas.1525430113
CrossRef Google scholar
[79]
Nicastro D, Frangakis AS, Typke D, Baumeister W (2000) Cryoelectron tomography of neurospora mitochondria. J Struct Biol 129:48–56. doi:10.1006/jsbi.1999.4204
CrossRef Google scholar
[80]
Nubel E, Wittig I, Kerscher S, Brandt U, Schagger H (2009) Two-dimensional native electrophoretic analysis of respiratory super-complexes from Yarrowia lipolytica. Proteomics 9:2408–2418. doi:10.1002/pmic.200800632
CrossRef Google scholar
[81]
Ostermeier C, Harrenga A, Ermler U, Michel H (1997) Structure at 2.7 A resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc Natl Acad SciUSA 94:10547–10553
CrossRef Google scholar
[82]
Palsdottir H, Lojero CG, Trumpower BL, Hunte C(2003) Structureof the yeast cytochrome bc1 complex with a hydroxyquinone anion Qo site inhibitor bound. J Biol Chem 278:31303–31311. doi:10. 1074/jbc.M302195200
[83]
Perkins G (1997) Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. JStruct Biol 119:260–272. doi:10.1006/jsbi. 1997.3885
[84]
Pfeiffer K (2003) Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 278:52873–52880. doi:10.1074/ jbc.M308366200
CrossRef Google scholar
[85]
Ramirez-Aguilar SJ (2011) The composition of plant mitochondrial supercomplexes changes with oxygen availability. J Biol Chem 286:43045–43053. doi:10.1074/jbc.M111.252544
CrossRef Google scholar
[86]
Riva A, Loffredo F, Uccheddu A, Riva FT, Tandler B (2003) Mitochondria of human adrenal cortex have tubular cristae with bulbous tips. J Clin Endocrinol Metab 88:1903–1906. doi:10. 1210/jc.2002-030013
CrossRef Google scholar
[87]
Riva A (2006) Structure of cristae in cardiac mitochondria of aged rat. Mech Ageing Dev 127:917–921. doi:10.1016/j.mad. 2006.09.002
[88]
Rochaix JD (2014) Regulation and dynamics of the light-harvesting system. Annu Rev Plant Biol 65:287–309. doi:10.1146/annurevarplant-050213-040226
[89]
Sazanov LA (2007) Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 46:2275–2288. doi:10.1021/bi602508x
CrossRef Google scholar
[90]
Sazanov LA (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 16:375–388. doi:10.1038/nrm3997
CrossRef Google scholar
[91]
Sazanov LA, Hinchliffe P(2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436. doi:10.1126/science.1123809
CrossRef Google scholar
[92]
Schafer E (2006) Architectureof active mammalian respiratory chain supercomplexes. J Biol Chem 281:15370–15375. doi:10. 1074/jbc.M513525200
[93]
Schagger H (2001) Respiratory chain supercomplexes. IUBMB Life 52:119–128. doi:10.1080/15216540152845911
CrossRef Google scholar
[94]
Schagger H(2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555:154–159
CrossRef Google scholar
[95]
Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J19:1777–1783. doi:10.1093/emboj/19.8.1777
CrossRef Google scholar
[96]
Schagger H, Pfeiffer K (2001) The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 276:37861–37867. doi:10.1074/jbc.M106474200
[97]
Schneider H, Lemasters JJ, Hochli M, Hackenbrock CR (1980) Liposome-mitochondrial inner membrane fusion. Lateral diffusion of integral electron transfer components. J Biol Chem 255:3748–3756
[98]
Schneider H, Lemasters JJ, Hackenbrock CR (1982a) Lateral diffusion of ubiquinone during electron transfer in phospholipidand ubiquinone-enriched mitochondrial membranes. JBiol Chem 257:10789–10793
[99]
Schneider H, Hochli M, Hackenbrock CR (1982b) Relationship between the density distribution of intramembrane particles and electron transfer in the mitochondrial inner membrane as revealedby cholesterol incorporation. J Cell Biol 94:387–393
CrossRef Google scholar
[100]
Sousa PM (2013) The bc:caa3 supercomplexes from the Gram positive bacterium Bacillus subtilis respiratory chain: a mega-complex organization? Arch Biochem Biophys 537:153–160. doi:10.1016/j.abb.2013.07.012
CrossRef Google scholar
[101]
Strauss M, Hofhaus G, Schroder RR, Kuhlbrandt W (2008) Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J27:1154–1160. doi:10.1038/emboj.2008.35
CrossRef Google scholar
[102]
Stroh A(2004) Assemblyof respiratory complexesI, III, andIV into NADH oxidase supercomplex stabilizes complex I in Para-coccus denitrificans. J Biol Chem 279:5000–5007. doi:10.1074/ jbc.M309505200
[103]
Stroud DA, Ryan MT (2013) Mitochondria: organization of respiratory chain complexes becomes cristae-lized. Curr Biol 23:R969–R971. doi:10.1016/j.cub.2013.09.035
CrossRef Google scholar
[104]
Stuart RA (2008) Supercomplex organization of the oxidative phosphorylation enzymes in yeast mitochondria. J Bioenerg Biomembr 40:411–417. doi:10.1007/s10863-008-9168-4
CrossRef Google scholar
[105]
Sun F (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121:1043–1057. doi:10.1016/ j.cell.2005.05.025
CrossRef Google scholar
[106]
Sun D, Li B, Qiu R, Fang H, Lyu J (2016) Cell Type-Specific Modulation of Respiratory Chain Supercomplex Organization. Int J Mol Sci. doi:10.3390/ijms17060926
CrossRef Google scholar
[107]
Tsukihara T (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 269:1069–1074
CrossRef Google scholar
[108]
Tsukihara T (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272:1136–1144
CrossRef Google scholar
[109]
Tsukihara T (2003) The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proc Natl Acad Sci U S A 100:15304–15309. doi:10.1073/pnas.2635097100
CrossRef Google scholar
[110]
Vartak R, Porras CA, Bai Y (2013) Respiratory supercomplexes: structure, function and assembly. Protein Cell 4:582–590. doi:10.1007/s13238-013-3032-y
CrossRef Google scholar
[111]
Vempati UD, Han X, Moraes CT (2009) Lack of cytochrome c in mouse fibroblasts disrupts assembly/stability of respiratory complexes I and IV. J Biol Chem 284:4383–4391. doi:10.1074/jbc.M805972200
CrossRef Google scholar
[112]
Vinothkumar KR, Zhu J, Hirst J (2014) Architecture of mammalian respiratory complex I. Nature 515:80–84. doi:10.1038/nature13686
CrossRef Google scholar
[113]
Wang X (2016) Overexpression of SIRT3 disrupts mitochondrial proteostasis and cell cycle progression. Protein Cell 7:295–299. doi:10.1007/s13238-016-0251-z
CrossRef Google scholar
[114]
Wenz T (2009) Role of phospholipids in respiratory cytochrome bc(1) complex catalysis and supercomplex formation. Biochim Biophys Acta 1787:609–616. doi:10.1016/j.bbabio.2009.02.012
CrossRef Google scholar
[115]
Wittig I, Braun HP, Schagger H (2006a) Blue native PAGE. Nat Protoc 1:418–428. doi:10.1038/nprot.2006.62
CrossRef Google scholar
[116]
Wittig I, Carrozzo R, Santorelli FM, Schagger H (2006b) Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1757:1066–1072. doi:10.1016/j.bbabio.2006.05.006
CrossRef Google scholar
[117]
Xia D (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277:60–66
CrossRef Google scholar
[118]
Yankovskaya V (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704. doi:10.1126/science.1079605
CrossRef Google scholar
[119]
Yoshikawa S (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280:1723–1729
CrossRef Google scholar
[120]
Zhang Z (1998) Electron transfer by domain movement in cytochrome bc1. Nature 392:677–684. doi:10.1038/33612
CrossRef Google scholar
[121]
Zhang M, Mileykovskaya E, Dowhan W (2005) Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J Biol Chem 280:29403–29408. doi:10.1074/jbc.M504955200
CrossRef Google scholar
[122]
Zhu J, Vinothkumar KR, Hirst J (2016) Structure ofmammalian respiratory complex I. Nature 536:354–358. doi:10.1038/nature19095
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 The Author(s) 2016. This article is published with open access at Springerlink.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(2495 KB)

Accesses

Citations

Detail

Sections
Recommended

/