RESEARCH ARTICLE

Drosophila RecQ5 is required for efficient SSA repair and suppression of LOH in vivo

Expand
  • 1. State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; 2. Graduate School of the Chinese Academy of Sciences, Beijing 100080, China; 3. Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children’s Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA

Received date: 06 Apr 2010

Accepted date: 25 Apr 2010

Published date: 01 May 2010

Abstract

RecQ5 in mammalian cells has been suggested to suppress inappropriate homologous recombination. However, the specific pathway(s) in which it is involved and the underlining mechanism(s) remain poorly understood. We took advantage of genetic tools in Drosophila to investigate how Drosophila RecQ5 (dRecQ5) functions in vivo in homologous recombination-mediated double strand break (DSB) repair. We generated null alleles of dRecQ5 using the targeted recombination technique. The mutant animals are homozygous viable, but with growth retardation during development. The mutants are sensitive to both exogenous DSB-inducing treatment, such as gamma-irradiation, and endogenously induced double strand breaks (DSBs) by I-Sce I endonuclease. In the absence of dRecQ5, single strand annealing (SSA) -mediated DSB repair is compromised with compensatory increases in either inter-homologous gene conversion, or non-homologous end joining (NHEJ) when inter-chromosomal homologous sequence is unavailable. Loss of function of dRecQ5 also leads to genome instability in loss of heterozygosity (LOH) assays. Together, our data demonstrate that dRecQ5 functions in SSA-mediated DSB repair to achieve its full efficiency and in suppression of LOH in Drosophila.

Cite this article

Yixu Chen, Wen Dui, Zhongsheng Yu, Changqing Li, Jun Ma, Renjie Jiao . Drosophila RecQ5 is required for efficient SSA repair and suppression of LOH in vivo[J]. Protein & Cell, 2010 , 1(5) : 478 -490 . DOI: 10.1007/s13238-010-0058-2

References

[1] Adams, M.D., McVey, M., and Sekelsky, J.J. (2003). Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science 299, 265–267 .10.1126/science.1077198
[2] Bachrati, C.Z., and Hickson, I.D. (2008). RecQ helicases: guardian angels of the DNA replication fork. Chromosoma 117, 219–233 .10.1007/s00412-007-0142-4
[3] Boubriak, I., Mason, P.A., Clancy, D.J., Dockray, J., Saunders, R.D., and Cox, L.S. (2009). DmWRNexo is a 3'–5' exonuclease: phenotypic and biochemical characterization of mutants of the Drosophila orthologue of human WRN exonuclease. Biogerontology 10, 267–277 .10.1007/s10522-008-9181-3
[4] Brodsky, M.H., Sekelsky, J.J., Tsang, G., Hawley, R.S., and Rubin, G.M. (2000). mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development. Genes Dev 14, 666–678 .
[5] Chu, W.K., and Hickson, I.D. (2009). RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer 9, 644–654 .10.1038/nrc2682
[6] Egli, D., Selvaraj, A., Yepiskoposyan, H., Zhang, B., Hafen, E., Georgiev, O., and Schaffner, W. (2003). Knockout of 'metal-responsive transcription factor' MTF-1 in Drosophila by homologous recombination reveals its central role in heavy metal homeostasis. EMBO J 22, 100–108 .10.1093/emboj/cdg012
[7] Egli, D., Yepiskoposyan, H., Selvaraj, A., Balamurugan, K., Rajaram, R., Simons, A., Multhaup, G., Mettler, S., Vardanyan, A., Georgiev, O., . (2006). A family knockout of all four Drosophila metallothioneins reveals a central role in copper homeostasis and detoxification. Mol Cell Biol 26, 2286–2296 .10.1128/MCB.26.6.2286-2296.2006
[8] Ghabrial, A., Ray, R.P., and Schupbach, T. (1998). okra and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila oogenesis. Genes Dev 12, 2711–2723 .10.1101/gad.12.17.2711
[9] Hu, Y., Lu, X., Barnes, E., Yan, M., Lou, H., and Luo, G. (2005). Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers. Mol Cell Biol 25, 3431–3442 .10.1128/MCB.25.9.3431-3442.2005
[10] Hu, Y., Raynard, S., Sehorn, M.G., Lu, X., Bussen, W., Zheng, L., Stark, J.M., Barnes, E.L., Chi, P., Janscak, P., . (2007). RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev 21, 3073–3084 .10.1101/gad.1609107
[11] Jeong, S.M., Kawasaki, K., Juni, N., and Shibata, T. (2000). Identification of Drosophila melanogaster RECQE as a member of a new family of RecQ homologues that is preferentially expressed in early embryos. Mol Gen Genet 263, 183–193 .10.1007/s004380051159
[12] Jeong, Y.S., Kang, Y., Lim, K.H., Lee, M.H., Lee, J., and Koo, H.S. (2003). Deficiency of Caenorhabditis elegans RecQ5 homologue reduces life span and increases sensitivity to ionizing radiation. DNA Repair (Amst) 2, 1309–1319 .10.1016/j.dnarep.2003.07.003
[13] Johnson-Schlitz, D., and Engels, W.R. (2006). Template disruptions and failure of double Holliday junction dissolution during double-strand break repair in Drosophila BLM mutants. Proc Natl Acad Sci U S A 103, 16840–16845 .10.1073/pnas.0607904103
[14] Johnson-Schlitz, D.M., Flores, C., and Engels, W.R. (2007). Multiple-pathway analysis of double-strand break repair mutations in Drosophila. PLoS Genet 3, e50.10.1371/journal.pgen.0030050
[15] Kappeler, M., Kranz, E., Woolcock, K., Georgiev, O., and Schaffner, W. (2008). Drosophila bloom helicase maintains genome integrity by inhibiting recombination between divergent DNA sequences. Nucleic Acids Res 36, 6907–6917 .10.1093/nar/gkn793
[16] Kawasaki, K., Maruyama, S., Nakayama, M., Matsumoto, K., and Shibata, T. (2002). Drosophila melanogaster RECQ5/QE DNA helicase: stimulation by GTP binding. Nucleic Acids Res 30, 3682–3691 .10.1093/nar/gkf487
[17] Kusano, K., Berres, M.E., and Engels, W.R. (1999). Evolution of the RECQ family of helicases: A drosophila homolog, Dmblm, is similar to the human bloom syndrome gene. Genetics 151, 1027–1039 .
[18] Kusano, K., Johnson-Schlitz, D.M., and Engels, W.R. (2001). Sterility of Drosophila with mutations in the Bloom syndrome gene—complementation by Ku70. Science 291, 2600–2602 .10.1126/science.291.5513.2600
[19] McVey, M., Andersen, S.L., Broze, Y., and Sekelsky, J. (2007). Multiple functions of Drosophila BLM helicase in maintenance of genome stability. Genetics 176, 1979–1992 .10.1534/genetics.106.070052
[20] Nakayama, M., Yamaguchi, S., Sagisu, Y., Sakurai, H., Ito, F., and Kawasaki, K. (2009). Loss of RecQ5 leads to spontaneous mitotic defects and chromosomal aberrations in Drosophila melanogaster. DNA Repair (Amst) 8, 232–241 .10.1016/j.dnarep.2008.10.007
[21] Ozsoy, A.Z., Sekelsky, J.J., and Matson, S.W. (2001). Biochemical characterization of the small isoform of Drosophila melanogaster RECQ5 helicase. Nucleic Acids Res 29, 2986–2993 .10.1093/nar/29.14.2986
[22] Plessis, A., Perrin, A., Haber, J.E., and Dujon, B. (1992). Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130, 451–460 .
[23] Preston, C.R., Flores, C.C., and Engels, W.R. (2006). Differential usage of alternative pathways of double-strand break repair in Drosophila. Genetics 172, 1055–1068 .10.1534/genetics.105.050138
[24] Rong, Y.S., and Golic, K.G. (2003). The homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila. Genetics 165, 1831–1842 .
[25] Rong, Y.S., Titen, S.W., Xie, H.B., Golic, M.M., Bastiani, M., Bandyopadhyay, P., Olivera, B.M., Brodsky, M., Rubin, G.M., and Golic, K.G. (2002). Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev 16, 1568–1581 .10.1101/gad.986602
[26] Rouet, P., Smih, F., and Jasin, M. (1994). Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91, 6064–6068 .10.1073/pnas.91.13.6064
[27] Saunders, R.D., Boubriak, I., Clancy, D.J., and Cox, L.S. (2008). Identification and characterization of a Drosophila ortholog of WRN exonuclease that is required to maintain genome integrity. Aging Cell 7, 418–425 .10.1111/j.1474-9726.2008.00388.x
[28] Sekelsky, J.J., Brodsky, M.H., Rubin, G.M., and Hawley, R.S. (1999). Drosophila and human RecQ5 exist in different isoforms generated by alternative splicing. Nucleic Acids Res 27, 3762–3769 .10.1093/nar/27.18.3762
[29] Takeuchi, H., Georgiev, O., Fetchko, M., Kappeler, M., Schaffner, W., and Egli, D. (2007). In vivo construction of transgenes in Drosophila. Genetics 175, 2019–2028 .10.1534/genetics.106.065920
[30] Trowbridge, K., McKim, K., Brill, S.J., and Sekelsky, J. (2007). Synthetic lethality of Drosophila in the absence of the MUS81 endonuclease and the DmBlm helicase is associated with elevated apoptosis. Genetics 176, 1993–2001 .10.1534/genetics.106.070060
[31] Wei, D.S., and Rong, Y.S. (2007). A genetic screen for DNA double-strand break repair mutations in Drosophila. Genetics 177, 63–77 .10.1534/genetics.107.077693
[32] Wu, J., Capp, C., Feng, L., and Hsieh, T.S. (2008). Drosophila homologue of the Rothmund-Thomson syndrome gene: essential function in DNA replication during development. Dev Biol 323, 130–142 .10.1016/j.ydbio.2008.08.006
[33] Xu, Y., Lei, Z., Huang, H., Dui, W., Liang, X., Ma, J., and Jiao, R. (2009). dRecQ4 is required for DNA synthesis and essential for cell proliferation in Drosophila. PLoS One 4, e6107.10.1371/journal.pone.0006107
[34] Zheng, L., Kanagaraj, R., Mihaljevic, B., Schwendener, S., Sartori, A.A., Gerrits, B., Shevelev, I., and Janscak, P. (2009). MRE11 complex links RECQ5 helicase to sites of DNA damage. Nucleic Acids Res 37, 2645–2657 .10.1093/nar/gkp147
Outlines

/