[1] Adams, M.D., McVey, M., and Sekelsky, J.J. (2003). Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing.
Science 299, 265–267 .
10.1126/science.1077198[2] Bachrati, C.Z., and Hickson, I.D. (2008). RecQ helicases: guardian angels of the DNA replication fork.
Chromosoma 117, 219–233 .
10.1007/s00412-007-0142-4[3] Boubriak, I., Mason, P.A., Clancy, D.J., Dockray, J., Saunders, R.D., and Cox, L.S. (2009). DmWRNexo is a 3'–5' exonuclease: phenotypic and biochemical characterization of mutants of the Drosophila orthologue of human WRN exonuclease.
Biogerontology 10, 267–277 .
10.1007/s10522-008-9181-3[4] Brodsky, M.H., Sekelsky, J.J., Tsang, G., Hawley, R.S., and Rubin, G.M. (2000). mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development.
Genes Dev 14, 666–678 .
[5] Chu, W.K., and Hickson, I.D. (2009). RecQ helicases: multifunctional genome caretakers.
Nat Rev Cancer 9, 644–654 .
10.1038/nrc2682[6] Egli, D., Selvaraj, A., Yepiskoposyan, H., Zhang, B., Hafen, E., Georgiev, O., and Schaffner, W. (2003). Knockout of 'metal-responsive transcription factor' MTF-1 in Drosophila by homologous recombination reveals its central role in heavy metal homeostasis.
EMBO J 22, 100–108 .
10.1093/emboj/cdg012[7] Egli, D., Yepiskoposyan, H., Selvaraj, A., Balamurugan, K., Rajaram, R., Simons, A., Multhaup, G., Mettler, S., Vardanyan, A., Georgiev, O.,
. (2006). A family knockout of all four Drosophila metallothioneins reveals a central role in copper homeostasis and detoxification. Mol Cell Biol 26, 2286–2296 .10.1128/MCB.26.6.2286-2296.2006
[8] Ghabrial, A., Ray, R.P., and Schupbach, T. (1998). okra and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila oogenesis. Genes Dev 12, 2711–2723 .10.1101/gad.12.17.2711
[9] Hu, Y., Lu, X., Barnes, E., Yan, M., Lou, H., and Luo, G. (2005). Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers. Mol Cell Biol 25, 3431–3442 .10.1128/MCB.25.9.3431-3442.2005
[10] Hu, Y., Raynard, S., Sehorn, M.G., Lu, X., Bussen, W., Zheng, L., Stark, J.M., Barnes, E.L., Chi, P., Janscak, P., . (2007). RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev 21, 3073–3084 .10.1101/gad.1609107
[11] Jeong, S.M., Kawasaki, K., Juni, N., and Shibata, T. (2000). Identification of Drosophila melanogaster RECQE as a member of a new family of RecQ homologues that is preferentially expressed in early embryos. Mol Gen Genet 263, 183–193 .10.1007/s004380051159
[12] Jeong, Y.S., Kang, Y., Lim, K.H., Lee, M.H., Lee, J., and Koo, H.S. (2003). Deficiency of Caenorhabditis elegans RecQ5 homologue reduces life span and increases sensitivity to ionizing radiation. DNA Repair (Amst) 2, 1309–1319 .10.1016/j.dnarep.2003.07.003
[13] Johnson-Schlitz, D., and Engels, W.R. (2006). Template disruptions and failure of double Holliday junction dissolution during double-strand break repair in Drosophila BLM mutants. Proc Natl Acad Sci U S A 103, 16840–16845 .10.1073/pnas.0607904103
[14] Johnson-Schlitz, D.M., Flores, C., and Engels, W.R. (2007). Multiple-pathway analysis of double-strand break repair mutations in Drosophila. PLoS Genet 3, e50.10.1371/journal.pgen.0030050
[15] Kappeler, M., Kranz, E., Woolcock, K., Georgiev, O., and Schaffner, W. (2008). Drosophila bloom helicase maintains genome integrity by inhibiting recombination between divergent DNA sequences. Nucleic Acids Res 36, 6907–6917 .10.1093/nar/gkn793
[16] Kawasaki, K., Maruyama, S., Nakayama, M., Matsumoto, K., and Shibata, T. (2002). Drosophila melanogaster RECQ5/QE DNA helicase: stimulation by GTP binding. Nucleic Acids Res 30, 3682–3691 .10.1093/nar/gkf487
[17] Kusano, K., Berres, M.E., and Engels, W.R. (1999). Evolution of the RECQ family of helicases: A drosophila homolog, Dmblm, is similar to the human bloom syndrome gene. Genetics 151, 1027–1039 .
[18] Kusano, K., Johnson-Schlitz, D.M., and Engels, W.R. (2001). Sterility of Drosophila with mutations in the Bloom syndrome gene—complementation by Ku70. Science 291, 2600–2602 .10.1126/science.291.5513.2600
[19] McVey, M., Andersen, S.L., Broze, Y., and Sekelsky, J. (2007). Multiple functions of Drosophila BLM helicase in maintenance of genome stability. Genetics 176, 1979–1992 .10.1534/genetics.106.070052
[20] Nakayama, M., Yamaguchi, S., Sagisu, Y., Sakurai, H., Ito, F., and Kawasaki, K. (2009). Loss of RecQ5 leads to spontaneous mitotic defects and chromosomal aberrations in Drosophila melanogaster. DNA Repair (Amst) 8, 232–241 .10.1016/j.dnarep.2008.10.007
[21] Ozsoy, A.Z., Sekelsky, J.J., and Matson, S.W. (2001). Biochemical characterization of the small isoform of Drosophila melanogaster RECQ5 helicase. Nucleic Acids Res 29, 2986–2993 .10.1093/nar/29.14.2986
[22] Plessis, A., Perrin, A., Haber, J.E., and Dujon, B. (1992). Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130, 451–460 .
[23] Preston, C.R., Flores, C.C., and Engels, W.R. (2006). Differential usage of alternative pathways of double-strand break repair in Drosophila. Genetics 172, 1055–1068 .10.1534/genetics.105.050138
[24] Rong, Y.S., and Golic, K.G. (2003). The homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila. Genetics 165, 1831–1842 .
[25] Rong, Y.S., Titen, S.W., Xie, H.B., Golic, M.M., Bastiani, M., Bandyopadhyay, P., Olivera, B.M., Brodsky, M., Rubin, G.M., and Golic, K.G. (2002). Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev 16, 1568–1581 .10.1101/gad.986602
[26] Rouet, P., Smih, F., and Jasin, M. (1994). Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91, 6064–6068 .10.1073/pnas.91.13.6064
[27] Saunders, R.D., Boubriak, I., Clancy, D.J., and Cox, L.S. (2008). Identification and characterization of a Drosophila ortholog of WRN exonuclease that is required to maintain genome integrity. Aging Cell 7, 418–425 .10.1111/j.1474-9726.2008.00388.x
[28] Sekelsky, J.J., Brodsky, M.H., Rubin, G.M., and Hawley, R.S. (1999). Drosophila and human RecQ5 exist in different isoforms generated by alternative splicing. Nucleic Acids Res 27, 3762–3769 .10.1093/nar/27.18.3762
[29] Takeuchi, H., Georgiev, O., Fetchko, M., Kappeler, M., Schaffner, W., and Egli, D. (2007). In vivo construction of transgenes in Drosophila. Genetics 175, 2019–2028 .10.1534/genetics.106.065920
[30] Trowbridge, K., McKim, K., Brill, S.J., and Sekelsky, J. (2007). Synthetic lethality of Drosophila in the absence of the MUS81 endonuclease and the DmBlm helicase is associated with elevated apoptosis. Genetics 176, 1993–2001 .10.1534/genetics.106.070060
[31] Wei, D.S., and Rong, Y.S. (2007). A genetic screen for DNA double-strand break repair mutations in Drosophila. Genetics 177, 63–77 .10.1534/genetics.107.077693
[32] Wu, J., Capp, C., Feng, L., and Hsieh, T.S. (2008). Drosophila homologue of the Rothmund-Thomson syndrome gene: essential function in DNA replication during development. Dev Biol 323, 130–142 .10.1016/j.ydbio.2008.08.006
[33] Xu, Y., Lei, Z., Huang, H., Dui, W., Liang, X., Ma, J., and Jiao, R. (2009). dRecQ4 is required for DNA synthesis and essential for cell proliferation in Drosophila. PLoS One 4, e6107.10.1371/journal.pone.0006107
[34] Zheng, L., Kanagaraj, R., Mihaljevic, B., Schwendener, S., Sartori, A.A., Gerrits, B., Shevelev, I., and Janscak, P. (2009). MRE11 complex links RECQ5 helicase to sites of DNA damage. Nucleic Acids Res 37, 2645–2657 .10.1093/nar/gkp147