REVIEW

The physiological role of drug transporters

  • Yu Liang 1 ,
  • Siqi Li 1 ,
  • Ligong Chen , 1,2
Expand
  • 1. Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
  • 2. Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China

Received date: 02 Jan 2015

Accepted date: 15 Feb 2015

Published date: 08 May 2015

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Transporters comprise the largest family of membrane proteins in human organism, including members of solute carrier transporter and ATP-binding cassette transporter families. They play pivotal roles in the absorption, distribution and excretion of xenobiotic and endogenous molecules. Transporters are widely expressed in various human tissues and are routinely evaluated during the process of drug development and approval. Over the past decade, increasing evidence shows that drug transporters are important in both normal physiology and disease. Currently, transporters are utilized as therapeutic targets to treat numerous diseases such as diabetes, major depression, hypertension and constipation. Despite the steady growth of the field of transporter biology, more than half of the members in transporter superfamily have little information available about their endogenous substrate(s) or physiological functions. This review outlines current research methods in transporter studies, and summarizes the drug-transporter interactions including drug-drug and drug-endogenous substrate interactions. In the end, we also discuss the therapeutic perspective of transporters based on their physiological and pathophysiological roles.

Cite this article

Yu Liang , Siqi Li , Ligong Chen . The physiological role of drug transporters[J]. Protein & Cell, 2015 , 6(5) : 334 -350 . DOI: 10.1007/s13238-015-0148-2

1
Alper SL, Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Asp Med34: 494-515

DOI

2
Bancila V, Cens T, Monnier D, Chanson F, Faure C, Dunant Y, Bloc A (2005) Two SUR1-specific histidine residues mandatory for zincinduced activation of the rat KATP channel. J Biol Chem280: 8793-8799

DOI

3
Birkenfeld AL, Lee HY, Guebre-Egziabher F, Alves TC, Jurczak MJ, Jornayvaz FR, Zhang D, Hsiao JJ, Martin-Montalvo A, Fischer-Rosinsky A (2011) Deletion of the mammalian INDY homologue mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice. Cell Metab14: 184-195

DOI

4
Boxberger KH, Hagenbuch B, Lampe JN (2014) Common drugs inhibit human organic cation transporter 1 (OCT1)-mediated neurotransmitter uptake. Drug Metab Dispos42: 990-995

DOI

5
Bröer S (2010) Xenopus laevis Oocytes. Methods Mol Biol637: 295-310

DOI

6
Chen L, Shu Y, Liang X, Chen EC, Yee SW, Zur AA, Li S, Xu L, Keshari KR, Lin MJ (2014) OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin. Proc Natl Acad Sci USA111: 9983-9988

DOI

7
Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B, Kerr-Conte J, Van Lommel L, Grunwald D, Favier A (2006) In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci119: 4199-4206

DOI

8
Dawson S, Stahl S, Paul N, Barber J, Kenna JG (2012) In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans. Drug Metab Dispos40: 130-138

DOI

9
De Bruyn T, Ye ZW, Peeters A, Sahi J, Baes M, Augustijns PF, Annaert PP (2011) Determination of OATP-, NTCP- and OCTmediated substrate uptake activities in individual and pooled batches of cryopreserved human hepatocytes. Eur J Pharm Sci43: 297-307

DOI

10
Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N (2014) Crystal structure of the human glucose transporter GLUT1. Nature510: 121-125

DOI

11
Diabetes Genetics Initiative of Broad Institute of Harvard and Mit, Lund University, Novartis Institutes of BioMedical Research, Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science316: 1331-1336

DOI

12
Diaz GA, Banikazemi M, Oishi K, Desnick RJ, Gelb BD (1999) Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anaemia syndrome. Nat Genet22: 309-312

DOI

13
Fang Y, Jayaram H, Shane T, Kolmakova-Partensky L, Wu F, Williams C, Xiong Y, Miller C (2009) Structure of a prokaryotic virtual proton pump at 3.2 A resolution. Nature460: 1040-1043

DOI

14
Flannick J, Thorleifsson G, Beer NL, Jacobs SB, Grarup N, Burtt NP, Mahajan A, Fuchsberger C, Atzmon G, Benediktsson R (2014) Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet46: 357-363

DOI

15
Fu Y, Tian W, Pratt EB, Dirling LB, Shyng SL, Meshul CK, Cohen DM (2009) Down-regulation of ZnT8 expression in INS-1 rat pancreatic beta cells reduces insulin content and glucose-inducible insulin secretion. PLoS One4: e5679

DOI

16
Gáborík Z, Grindstaff K, Oosterbuis B (2014) Experts only—the transporter book. SOLVO Biotechnology, Budaörs

17
Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol31: 397-405

DOI

18
Gao X, Lu F, Zhou L, Dang S, Sun L, Li X, Wang J, Shi Y (2009) Structure and mechanism of an amino acid antiporter. Science324: 1565-1568

DOI

19
Geier EG, Schlessinger A, Fan H, Gable JE, Irwin JJ, Sali A, Giacominia KM (2013) Structure-based ligand discovery for the large-neutral amino acid transporter 1, LAT-1. Proc Natl Acad Sci USA110: 5480-5485

DOI

20
Glavinas H, Kis E, Pal A, Kovacs R, Jani M, Vagi E, Molnar E, Bansaghi S, Kele Z, Janaky T (2007) ABCG2 (breast cancer resistance protein/mitoxantrone resistance-associated protein) ATPase assay: a useful tool to detect drug-transporter interactions. Drug Metab Dispos35: 1533-1542

DOI

21
Gottesman MM, Ambudkar SV (2001) Overview: ABC transporters and human disease. J Bioenerg Biomembr33: 453-458

DOI

22
Grisanzio C, Werner L, Takeda D, Awoyemi BC, Pomerantz MM, Yamada H, Sooriakumaran P, Robinson BD, Leung R, Schinzel AC (2012) Genetic and functional analyses implicate the NUDT11, HNF1B, and SLC22A3 genes in prostate cancer pathogenesis. Proc Natl Acad Sci USA109: 11252-11257

DOI

23
Gründemann D, Harlfinger S, Golz S, Geerts A, Lazar A, Berkels R, Jung N, Rubbert A, Schomig E (2005) Discovery of the ergothioneine transporter. Proc Natl Acad Sci USA102: 5256-5261

DOI

24
Gruswitz F, Chaudhary S, Ho JD, Schlessinger A, Pezeshki B, Ho CM, Sali A, Westhoff CM, Stroud RM (2010) Function of human Rh based on structure of RhCG at 2.1 A. Proc Natl Acad Sci USA107: 9638-9643

DOI

25
Hagenbuch B, Stieger B (2013) The SLCO (former SLC21) superfamily of transporters. Mol Asp Med34: 396-412

DOI

26
Halegoua-De Marzio DL, Fenkel JM(2014) Concepts and treatment approaches in nonalcoholic fatty liver disease. Adv Hepatol, Article ID 357965

DOI

27
Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology96: 736-749

28
International Transporter Consortium, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V (2010) Membrane transporters in drug development. Nat Rev Drug Discov9: 215-236

DOI

29
Ito K, Hoekstra D, van Ijzendoorn SC (2008) Cholesterol but not association with detergent resistant membranes is necessary for the transport function of MRP2/ABCC2. FEBS Lett582: 4153-4157

DOI

30
Johnson AD, Kavousi M, Smith AV, Chen MH, Dehghan A, Aspelund T, Lin JP, van Duijn CM, Harris TB, Cupples LA (2009) Genome-wide association meta-analysis for total serum bilirubin levels. Hum Mol Genet18: 2700-2710

DOI

31
Kato K, Mori H, Kito T, Yokochi M, Ito S, Inoue K, Yonezawa A, Katsura T, Kumagai Y, Yuasa H (2014) Investigation of endogenous compounds for assessing the drug interactions in the urinary excretion involving multidrug and toxin extrusion proteins. Pharm Res31: 136-147

DOI

32
Keppler D (2011) Cholestasis and the role of basolateral efflux pumps. Z Gastroenterol49: 1553-1557

DOI

33
Kirchhoff K, Machicao F, Haupt A, Schafer SA, Tschritter O, Staiger H, Stefan N, Haring HU, Fritsche A (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia51: 597-601

DOI

34
Kis E, Ioja E, Nagy T, Szente L, Heredi-Szabo K, Krajcsi P (2009) Effect of membrane cholesterol on BSEP/Bsep activity: species specificity studies for substrates and inhibitors. Drug Metab Dispos37: 1878-1886

DOI

35
Kis E, Ioja E, Rajnai Z, Jani M, Mehn D, Heredi-Szabo K, Krajcsi P (2012) BSEP inhibition: in vitro screens to assess cholestatic potential of drugs. Toxicol In Vitro26: 1294-1299

DOI

36
Köck K, Ferslew BC, Netterberg I, Yang K, Urban TJ, Swaan PW, Stewart PW, Brouwer KL (2014) Risk factors for development of cholestatic drug-induced liver injury: inhibition of hepatic basolateral bile acid transporters multidrug resistance-associated proteins 3 and 4. Drug Metab Dispos42: 665-674

DOI

37
Koepsell H (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Asp Med34: 413-435

DOI

38
Kvist T, Hansen KB, Bräuner-Osborne H (2011) The use of Xenopus oocytes in drug screening. Expert Opin Drug Discov6: 141-153

DOI

39
Labay V, Raz T, Baron D, Mandel H, Williams H, Barrett T, Szargel R, McDonald L, Shalata A, Nosaka K (1999) Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat Genet22: 300-304

DOI

40
Lemaire K, Ravier MA, Schraenen A, Creemers JW, Van de Plas R, Granvik M, Van Lommel L, Waelkens E, Chimienti F, Rutter GA (2009) Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci USA106: 14872-14877

DOI

41
Li S, Chen Y, Zhang S, More SS, Huang X, Giacomini KM (2011) Role of organic cation transporter 1, OCT1 in the pharmacokinetics and toxicity of cis-diammine(pyridine)chloroplatinum(II) and oxaliplatin in mice. Pharm Res28: 610-625

DOI

42
Liang R, Fei YJ, Prasad PD, Ramamoorthy S, Han H, Yang-Feng TL, Hediger MA, Ganapathy V, Leibach FH (1995) Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem270: 6456-6463

43
Little PJ, Bhattacharya R, Moreyra AE, Korichneva IL (2010) Zinc and cardiovascular disease. Nutrition26: 1050-1057

DOI

44
Liu W, Liang R, Ramamoorthy S, Fei YJ, Ganapathy ME, Hediger MA, Ganapathy V, Leibach FH (1995) Molecular cloning of PEPT 2, a new member of the H+/peptide cotransporter family, from human kidney. Biochim Biophys Acta1235: 1235-1466

DOI

45
Lu F, Li S, Jiang Y, Jiang J, Fan H, Lu G, Deng D, Dang S, Zhang X, Wang J (2011) Structure and mechanism of the uracil transporter UraA. Nature472: 243-246

DOI

46
Mancusso R, Gregorio GG, Liu Q, Wang DN (2012) Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature491: 622-626

DOI

47
Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y (2003) Impact of drug transporter studies on drug discovery and development. Pharmacol Rev55: 425-461

DOI

48
Mocchegiani E, Giacconi R, Malavolta M (2008) Zinc signalling and subcellular distribution: emerging targets in type 2 diabetes. Trends Mol Med14: 419-428

DOI

49
Mulligan C, Fitzgerald GA, Wang DN, Mindell JA (2014) Functional characterization of a Na+-dependent dicarboxylate transporter from Vibrio cholerae. J Gen Physiol143: 745-759

DOI

50
Nakai Y, Inoue K, Abe N, Hatakeyama M, Ohta KY, Otagiri M, Hayashi Y, Yuasa H (2007) Functional characterization of human proton-coupled folate transporter/heme carrier protein 1 heterologously expressed in mammalian cells as a folate transporter. J Pharmacol Exp Ther322: 469-476

DOI

51
Nakayama A, Matsuo H, Takada T, Ichida K, Nakamura T, Ikebuchi Y, Ito K, Hosoya T, Kanai Y, Suzuki H (2011) ABCG2 is a high-capacity urate transporter and its genetic impairment increases serum uric acid levels in humans. Nucleosides Nucleotides Nucleic Acids30: 1091-1097

DOI

52
Nicolson TJ, Bellomo EA, Wijesekara N, Loder MK, Baldwin JM, Gyulkhandanyan AV, Koshkin V, Tarasov AI, Carzaniga R, Kronenberger K (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes58: 2070-2083

DOI

53
Pal A, Mehn D, Molnar E, Gedey S, Meszaros P, Nagy T, Glavinas H, Janaky T, von Richter O, Bathori G (2007) Cholesterol potentiates ABCG2 activity in a heterologous expression system: improved in vitro model to study function of human ABCG2. J Pharmacol Exp Ther321: 1085-1094

DOI

54
Pascual JM, Wang D, Lecumberri B, Yang H, Mao X, Yang R, De Vivo DC (2004) GLUT1 deficiency and other glucose transporter diseases. Eur J Endocrinol150: 627-633

DOI

55
Pearson E (2014) Zinc transport and diabetes risk. Nat Genet46: 323-324

DOI

56
Petrovic V, Teng S, Piquette-Miller M (2007) Regulation of drug transporters during infection and inflammation. Mol Interv7: 99-111

DOI

57
Prasad AS, Beck FW, Snell DC, Kucuk O (2009) Zinc in cancer prevention. Nutr Cancer61: 879-887

DOI

58
Prost AL, Bloc A, Hussy N, Derand R, Vivaudou M (2004) Zinc is both an intracellular and extracellular regulator of KATP channel function. J Physiol15: 157-167

DOI

59
Rajgopal A, Edmondnson A, Goldman ID, Zhao R (2001) SLC19A3 encodes a second thiamine transporter ThTr2. Biochim Biophys Acta1537: 175-178

DOI

60
Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS, Ganapathy V, Blakely RD (1993) Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci USA90: 2542-2546

DOI

61
Ramsey LB, Bruun GH, Yang W, Treviño LR, Vattathil S, Scheet P, Cheng C, Rosner GL, Giacomini KM, Fan Y (2012) Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res22: 1-8

DOI

62
Rappaport N, Nativ N, Stelzer G, Twik M, Guan-Golan Y, Stein TI, Bahir I, Belinky F, Morrey CP, Safran M, (2013) MalaCards: an integrated compendium for diseases and their annotation. Database2013: bat018.

DOI

63
Rogina B, Reenan RA, Nilsen SP, Helfand SL (2000) Extended lifespan conferred by cotransporter gene mutations in Drosophila. Science290: 2137-2140

DOI

64
Sanna S, Busonero F, Maschio A, McArdle PF, Usala G, Dei M, Lai S, Mulas A, Piras MG, Perseu L (2009) Common variants in the SLCO1B3 locus are associated with bilirubin levels and unconjugated hyperbilirubinemia. Hum Mol Genet18: 2711-2718

DOI

65
Schlessinger A, Geier E, Fan H, Irwin JJ, Shoichet BK, Giacomini KM, Sali A (2011) Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proc Natl Acad Sci USA108: 15810-15815

DOI

66
Schlessinger A, Wittwer MB, Dahlin A, Khuri N, Bonomi M, Fan H, Giacomini KM, Sali A (2012) High selectivity of the γ-aminobutyric acid transporter 2 (GAT-2, SLC6A13) revealed by structurebased approach. J Biol Chem287: 37745-37756

DOI

67
SEARCH Collaborative Group, Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, Gut I, Lathrop M, Collins R (2008) SLCO1B1 variants and statin-induced myopathy-a genomewide study. N Engl J Med359: 789-799

DOI

68
Shaffer PL, Goehring A, Shankaranarayanan A, Gouaux E (2009) Structure and mechanism of a na+-independent amino acid transporter. Science325: 1010-1014

DOI

69
Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, Ianculescu AG, Yue L, Lo JC, Burchard EG (2007) Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest117: 1422-1431

DOI

70
Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature445: 881-885

DOI

71
Stefková J, Poledne R, Hubacek JA (2004) ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiol Res53: 235-243

72
Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wägele B, Altmaier E, Cardiogram Deloukas, Erdmann PJ (2011) Human metabolic individuality in biomedical and pharmaceutical research. Nature477: 54-60

DOI

73
Sun J, Aluvila S, Kotaria R, Mayor JA, Walters DE, Kaplan RS (2010) Mitochondrial and plasma membrane citrate transporters: discovery of selective inhibitors and application to structure/function analysis. Mol Cell Pharmacol2: 101-110

74
Tamaki M, Fujitani Y, Hara A, Uchida T, Tamura Y, Takeno K, Kawaguchi M, Watanabe T, Ogihara T, Fukunaka A (2013) The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Invest123: 4513-4524

DOI

75
Treviño LR, Shimasaki N, Yang W, Panetta JC, Cheng C, Pei D, Chan D, Sparreboom A, Giacomini KM, Pui CH (2009) Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol27: 5972-5978

DOI

76
Tweedie D, Polli JW, Berglund EG, Huang SM, Zhang L, Poirier A, Chu X, Feng B, International Transporter, C (2013) Transporter studies in drug development: experience to date and follow-up on decision trees from the international transporter consortium. Clin Pharmacol Ther94: 113-125

DOI

77
Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y (2002) Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther302: 510-515

DOI

78
Wang PY, Neretti N, Whitaker R, Hosier S, Chang C, Lu D, Rogina B, Helfand SL (2009) Long-lived Indy and calorie restriction interact to extend life span. Proc Natl Acad Sci USA106: 9262-9267

DOI

79
Watt NT, Whitehouse IJ, Hooper NM (2011) The role of zinc in alzheimer’s disease. Int J Alzheimer’s Dis. Article ID 971021.

DOI

80
Wijesekara N, Chimienti F, Wheeler MB (2009) Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes Metab11 (Suppl 4): 202-214

DOI

81
Wijesekara N, Dai FF, Hardy AB, Giglou PR, Bhattacharjee A, Koshkin V, Chimienti F, Gaisano HY, Rutter GA, Wheeler MB (2010) Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia53: 1656-1668

DOI

82
Wittwer MB, Zur AA, Khuri N, Kido Y, Kosaka A, Zhang X, Morrissey KM, Sali A, Huang Y, Giacomini KM (2013) Discovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modeling. J Med Chem56: 781-795

DOI

83
Woodward OM, Kottgen A, Coresh J, Boerwinkle E, Guggino WB, Kottgen M (2009) Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci USA106: 10338-10342

DOI

84
Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, Conway SJ, Ganapathy V (1998) Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem273: 32776-32786

DOI

85
Xu J, Wang J, Chen B (2012a) SLC30A8 (ZnT8) variations and type 2 diabetes in the Chinese Han population. Genet Mol Res11: 1592-1598

DOI

86
Xu Y, Yan Y, Seeman D, Sun L, Dubin PL (2012b) Multimerization and aggregation of native-state insulin: effect of zinc. Langmuir28: 579-586

DOI

87
Zhang L, Strong JM, Qiu W, Lesko LJ, Huang SM (2006) Scientific perspectives on drug transporters and their role in drug interactions. Mol Pharm3: 62-69

DOI

88
Zhou M, Engel K, Wang J (2007) Evidence for significant contribution of a newly identified monoamine transporter (PMAT) to serotonin uptake in the human brain. Biochem Pharmacol1: 147-154

DOI

Outlines

/