The physiological role of drug transporters
Yu Liang, Siqi Li, Ligong Chen
The physiological role of drug transporters
Transporters comprise the largest family of membrane proteins in human organism, including members of solute carrier transporter and ATP-binding cassette transporter families. They play pivotal roles in the absorption, distribution and excretion of xenobiotic and endogenous molecules. Transporters are widely expressed in various human tissues and are routinely evaluated during the process of drug development and approval. Over the past decade, increasing evidence shows that drug transporters are important in both normal physiology and disease. Currently, transporters are utilized as therapeutic targets to treat numerous diseases such as diabetes, major depression, hypertension and constipation. Despite the steady growth of the field of transporter biology, more than half of the members in transporter superfamily have little information available about their endogenous substrate(s) or physiological functions. This review outlines current research methods in transporter studies, and summarizes the drug-transporter interactions including drug-drug and drug-endogenous substrate interactions. In the end, we also discuss the therapeutic perspective of transporters based on their physiological and pathophysiological roles.
transporter / physiological role / therapeutic implication
[1] |
Alper SL, Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Asp Med34: 494-515
CrossRef
Google scholar
|
[2] |
Bancila V, Cens T, Monnier D, Chanson F, Faure C, Dunant Y, Bloc A (2005) Two SUR1-specific histidine residues mandatory for zincinduced activation of the rat KATP channel. J Biol Chem280: 8793-8799
CrossRef
Google scholar
|
[3] |
Birkenfeld AL, Lee HY, Guebre-Egziabher F, Alves TC, Jurczak MJ, Jornayvaz FR, Zhang D, Hsiao JJ, Martin-Montalvo A, Fischer-Rosinsky A
CrossRef
Google scholar
|
[4] |
Boxberger KH, Hagenbuch B, Lampe JN (2014) Common drugs inhibit human organic cation transporter 1 (OCT1)-mediated neurotransmitter uptake. Drug Metab Dispos42: 990-995
CrossRef
Google scholar
|
[5] |
Bröer S (2010) Xenopus laevis Oocytes. Methods Mol Biol637: 295-310
CrossRef
Google scholar
|
[6] |
Chen L, Shu Y, Liang X, Chen EC, Yee SW, Zur AA, Li S, Xu L, Keshari KR, Lin MJ
CrossRef
Google scholar
|
[7] |
Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B, Kerr-Conte J, Van Lommel L, Grunwald D, Favier A
CrossRef
Google scholar
|
[8] |
Dawson S, Stahl S, Paul N, Barber J, Kenna JG (2012) In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans. Drug Metab Dispos40: 130-138
CrossRef
Google scholar
|
[9] |
De Bruyn T, Ye ZW, Peeters A, Sahi J, Baes M, Augustijns PF, Annaert PP (2011) Determination of OATP-, NTCP- and OCTmediated substrate uptake activities in individual and pooled batches of cryopreserved human hepatocytes. Eur J Pharm Sci43: 297-307
CrossRef
Google scholar
|
[10] |
Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N (2014) Crystal structure of the human glucose transporter GLUT1. Nature510: 121-125
CrossRef
Google scholar
|
[11] |
Diabetes Genetics Initiative of Broad Institute of Harvard and Mit, Lund University, Novartis Institutes of BioMedical Research, Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ
CrossRef
Google scholar
|
[12] |
Diaz GA, Banikazemi M, Oishi K, Desnick RJ, Gelb BD (1999) Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anaemia syndrome. Nat Genet22: 309-312
CrossRef
Google scholar
|
[13] |
Fang Y, Jayaram H, Shane T, Kolmakova-Partensky L, Wu F, Williams C, Xiong Y, Miller C (2009) Structure of a prokaryotic virtual proton pump at 3.2 A resolution. Nature460: 1040-1043
CrossRef
Google scholar
|
[14] |
Flannick J, Thorleifsson G, Beer NL, Jacobs SB, Grarup N, Burtt NP, Mahajan A, Fuchsberger C, Atzmon G, Benediktsson R
CrossRef
Google scholar
|
[15] |
Fu Y, Tian W, Pratt EB, Dirling LB, Shyng SL, Meshul CK, Cohen DM (2009) Down-regulation of ZnT8 expression in INS-1 rat pancreatic beta cells reduces insulin content and glucose-inducible insulin secretion. PLoS One4: e5679
CrossRef
Google scholar
|
[16] |
Gáborík Z, Grindstaff K, Oosterbuis B (2014) Experts only—the transporter book. SOLVO Biotechnology, Budaörs
|
[17] |
Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol31: 397-405
CrossRef
Google scholar
|
[18] |
Gao X, Lu F, Zhou L, Dang S, Sun L, Li X, Wang J, Shi Y (2009) Structure and mechanism of an amino acid antiporter. Science324: 1565-1568
CrossRef
Google scholar
|
[19] |
Geier EG, Schlessinger A, Fan H, Gable JE, Irwin JJ, Sali A, Giacominia KM (2013) Structure-based ligand discovery for the large-neutral amino acid transporter 1, LAT-1. Proc Natl Acad Sci USA110: 5480-5485
CrossRef
Google scholar
|
[20] |
Glavinas H, Kis E, Pal A, Kovacs R, Jani M, Vagi E, Molnar E, Bansaghi S, Kele Z, Janaky T
CrossRef
Google scholar
|
[21] |
Gottesman MM, Ambudkar SV (2001) Overview: ABC transporters and human disease. J Bioenerg Biomembr33: 453-458
CrossRef
Google scholar
|
[22] |
Grisanzio C, Werner L, Takeda D, Awoyemi BC, Pomerantz MM, Yamada H, Sooriakumaran P, Robinson BD, Leung R, Schinzel AC
CrossRef
Google scholar
|
[23] |
Gründemann D, Harlfinger S, Golz S, Geerts A, Lazar A, Berkels R, Jung N, Rubbert A, Schomig E (2005) Discovery of the ergothioneine transporter. Proc Natl Acad Sci USA102: 5256-5261
CrossRef
Google scholar
|
[24] |
Gruswitz F, Chaudhary S, Ho JD, Schlessinger A, Pezeshki B, Ho CM, Sali A, Westhoff CM, Stroud RM (2010) Function of human Rh based on structure of RhCG at 2.1 A. Proc Natl Acad Sci USA107: 9638-9643
CrossRef
Google scholar
|
[25] |
Hagenbuch B, Stieger B (2013) The SLCO (former SLC21) superfamily of transporters. Mol Asp Med34: 396-412
CrossRef
Google scholar
|
[26] |
Halegoua-De Marzio DL, Fenkel JM(2014) Concepts and treatment approaches in nonalcoholic fatty liver disease. Adv Hepatol, Article ID 357965
CrossRef
Google scholar
|
[27] |
Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology96: 736-749
|
[28] |
International Transporter Consortium, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V
CrossRef
Google scholar
|
[29] |
Ito K, Hoekstra D, van Ijzendoorn SC (2008) Cholesterol but not association with detergent resistant membranes is necessary for the transport function of MRP2/ABCC2. FEBS Lett582: 4153-4157
CrossRef
Google scholar
|
[30] |
Johnson AD, Kavousi M, Smith AV, Chen MH, Dehghan A, Aspelund T, Lin JP, van Duijn CM, Harris TB, Cupples LA
CrossRef
Google scholar
|
[31] |
Kato K, Mori H, Kito T, Yokochi M, Ito S, Inoue K, Yonezawa A, Katsura T, Kumagai Y, Yuasa H
CrossRef
Google scholar
|
[32] |
Keppler D (2011) Cholestasis and the role of basolateral efflux pumps. Z Gastroenterol49: 1553-1557
CrossRef
Google scholar
|
[33] |
Kirchhoff K, Machicao F, Haupt A, Schafer SA, Tschritter O, Staiger H, Stefan N, Haring HU, Fritsche A (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia51: 597-601
CrossRef
Google scholar
|
[34] |
Kis E, Ioja E, Nagy T, Szente L, Heredi-Szabo K, Krajcsi P (2009) Effect of membrane cholesterol on BSEP/Bsep activity: species specificity studies for substrates and inhibitors. Drug Metab Dispos37: 1878-1886
CrossRef
Google scholar
|
[35] |
Kis E, Ioja E, Rajnai Z, Jani M, Mehn D, Heredi-Szabo K, Krajcsi P (2012) BSEP inhibition: in vitro screens to assess cholestatic potential of drugs. Toxicol In Vitro26: 1294-1299
CrossRef
Google scholar
|
[36] |
Köck K, Ferslew BC, Netterberg I, Yang K, Urban TJ, Swaan PW, Stewart PW, Brouwer KL (2014) Risk factors for development of cholestatic drug-induced liver injury: inhibition of hepatic basolateral bile acid transporters multidrug resistance-associated proteins 3 and 4. Drug Metab Dispos42: 665-674
CrossRef
Google scholar
|
[37] |
Koepsell H (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Asp Med34: 413-435
CrossRef
Google scholar
|
[38] |
Kvist T, Hansen KB, Bräuner-Osborne H (2011) The use of Xenopus oocytes in drug screening. Expert Opin Drug Discov6: 141-153
CrossRef
Google scholar
|
[39] |
Labay V, Raz T, Baron D, Mandel H, Williams H, Barrett T, Szargel R, McDonald L, Shalata A, Nosaka K
CrossRef
Google scholar
|
[40] |
Lemaire K, Ravier MA, Schraenen A, Creemers JW, Van de Plas R, Granvik M, Van Lommel L, Waelkens E, Chimienti F, Rutter GA
CrossRef
Google scholar
|
[41] |
Li S, Chen Y, Zhang S, More SS, Huang X, Giacomini KM (2011) Role of organic cation transporter 1, OCT1 in the pharmacokinetics and toxicity of cis-diammine(pyridine)chloroplatinum(II) and oxaliplatin in mice. Pharm Res28: 610-625
CrossRef
Google scholar
|
[42] |
Liang R, Fei YJ, Prasad PD, Ramamoorthy S, Han H, Yang-Feng TL, Hediger MA, Ganapathy V, Leibach FH (1995) Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem270: 6456-6463
|
[43] |
Little PJ, Bhattacharya R, Moreyra AE, Korichneva IL (2010) Zinc and cardiovascular disease. Nutrition26: 1050-1057
CrossRef
Google scholar
|
[44] |
Liu W, Liang R, Ramamoorthy S, Fei YJ, Ganapathy ME, Hediger MA, Ganapathy V, Leibach FH (1995) Molecular cloning of PEPT 2, a new member of the H+/peptide cotransporter family, from human kidney. Biochim Biophys Acta1235: 1235-1466
CrossRef
Google scholar
|
[45] |
Lu F, Li S, Jiang Y, Jiang J, Fan H, Lu G, Deng D, Dang S, Zhang X, Wang J
CrossRef
Google scholar
|
[46] |
Mancusso R, Gregorio GG, Liu Q, Wang DN (2012) Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature491: 622-626
CrossRef
Google scholar
|
[47] |
Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y (2003) Impact of drug transporter studies on drug discovery and development. Pharmacol Rev55: 425-461
CrossRef
Google scholar
|
[48] |
Mocchegiani E, Giacconi R, Malavolta M (2008) Zinc signalling and subcellular distribution: emerging targets in type 2 diabetes. Trends Mol Med14: 419-428
CrossRef
Google scholar
|
[49] |
Mulligan C, Fitzgerald GA, Wang DN, Mindell JA (2014) Functional characterization of a Na+-dependent dicarboxylate transporter from Vibrio cholerae. J Gen Physiol143: 745-759
CrossRef
Google scholar
|
[50] |
Nakai Y, Inoue K, Abe N, Hatakeyama M, Ohta KY, Otagiri M, Hayashi Y, Yuasa H (2007) Functional characterization of human proton-coupled folate transporter/heme carrier protein 1 heterologously expressed in mammalian cells as a folate transporter. J Pharmacol Exp Ther322: 469-476
CrossRef
Google scholar
|
[51] |
Nakayama A, Matsuo H, Takada T, Ichida K, Nakamura T, Ikebuchi Y, Ito K, Hosoya T, Kanai Y, Suzuki H
CrossRef
Google scholar
|
[52] |
Nicolson TJ, Bellomo EA, Wijesekara N, Loder MK, Baldwin JM, Gyulkhandanyan AV, Koshkin V, Tarasov AI, Carzaniga R, Kronenberger K
CrossRef
Google scholar
|
[53] |
Pal A, Mehn D, Molnar E, Gedey S, Meszaros P, Nagy T, Glavinas H, Janaky T, von Richter O, Bathori G
CrossRef
Google scholar
|
[54] |
Pascual JM, Wang D, Lecumberri B, Yang H, Mao X, Yang R, De Vivo DC (2004) GLUT1 deficiency and other glucose transporter diseases. Eur J Endocrinol150: 627-633
CrossRef
Google scholar
|
[55] |
Pearson E (2014) Zinc transport and diabetes risk. Nat Genet46: 323-324
CrossRef
Google scholar
|
[56] |
Petrovic V, Teng S, Piquette-Miller M (2007) Regulation of drug transporters during infection and inflammation. Mol Interv7: 99-111
CrossRef
Google scholar
|
[57] |
Prasad AS, Beck FW, Snell DC, Kucuk O (2009) Zinc in cancer prevention. Nutr Cancer61: 879-887
CrossRef
Google scholar
|
[58] |
Prost AL, Bloc A, Hussy N, Derand R, Vivaudou M (2004) Zinc is both an intracellular and extracellular regulator of KATP channel function. J Physiol15: 157-167
CrossRef
Google scholar
|
[59] |
Rajgopal A, Edmondnson A, Goldman ID, Zhao R (2001) SLC19A3 encodes a second thiamine transporter ThTr2. Biochim Biophys Acta1537: 175-178
CrossRef
Google scholar
|
[60] |
Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS, Ganapathy V, Blakely RD (1993) Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci USA90: 2542-2546
CrossRef
Google scholar
|
[61] |
Ramsey LB, Bruun GH, Yang W, Treviño LR, Vattathil S, Scheet P, Cheng C, Rosner GL, Giacomini KM, Fan Y
CrossRef
Google scholar
|
[62] |
Rappaport N, Nativ N, Stelzer G, Twik M, Guan-Golan Y, Stein TI, Bahir I, Belinky F, Morrey CP, Safran M,
CrossRef
Google scholar
|
[63] |
Rogina B, Reenan RA, Nilsen SP, Helfand SL (2000) Extended lifespan conferred by cotransporter gene mutations in Drosophila. Science290: 2137-2140
CrossRef
Google scholar
|
[64] |
Sanna S, Busonero F, Maschio A, McArdle PF, Usala G, Dei M, Lai S, Mulas A, Piras MG, Perseu L
CrossRef
Google scholar
|
[65] |
Schlessinger A, Geier E, Fan H, Irwin JJ, Shoichet BK, Giacomini KM, Sali A (2011) Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proc Natl Acad Sci USA108: 15810-15815
CrossRef
Google scholar
|
[66] |
Schlessinger A, Wittwer MB, Dahlin A, Khuri N, Bonomi M, Fan H, Giacomini KM, Sali A (2012) High selectivity of the γ-aminobutyric acid transporter 2 (GAT-2, SLC6A13) revealed by structurebased approach. J Biol Chem287: 37745-37756
CrossRef
Google scholar
|
[67] |
SEARCH Collaborative Group, Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, Gut I, Lathrop M, Collins R (2008) SLCO1B1 variants and statin-induced myopathy-a genomewide study. N Engl J Med359: 789-799
CrossRef
Google scholar
|
[68] |
Shaffer PL, Goehring A, Shankaranarayanan A, Gouaux E (2009) Structure and mechanism of a na+-independent amino acid transporter. Science325: 1010-1014
CrossRef
Google scholar
|
[69] |
Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, Ianculescu AG, Yue L, Lo JC, Burchard EG
CrossRef
Google scholar
|
[70] |
Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S
CrossRef
Google scholar
|
[71] |
Stefková J, Poledne R, Hubacek JA (2004) ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiol Res53: 235-243
|
[72] |
Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wägele B, Altmaier E, Cardiogram Deloukas, Erdmann PJ
CrossRef
Google scholar
|
[73] |
Sun J, Aluvila S, Kotaria R, Mayor JA, Walters DE, Kaplan RS (2010) Mitochondrial and plasma membrane citrate transporters: discovery of selective inhibitors and application to structure/function analysis. Mol Cell Pharmacol2: 101-110
|
[74] |
Tamaki M, Fujitani Y, Hara A, Uchida T, Tamura Y, Takeno K, Kawaguchi M, Watanabe T, Ogihara T, Fukunaka A
CrossRef
Google scholar
|
[75] |
Treviño LR, Shimasaki N, Yang W, Panetta JC, Cheng C, Pei D, Chan D, Sparreboom A, Giacomini KM, Pui CH
CrossRef
Google scholar
|
[76] |
Tweedie D, Polli JW, Berglund EG, Huang SM, Zhang L, Poirier A, Chu X, Feng B, International Transporter, C (2013) Transporter studies in drug development: experience to date and follow-up on decision trees from the international transporter consortium. Clin Pharmacol Ther94: 113-125
CrossRef
Google scholar
|
[77] |
Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y (2002) Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther302: 510-515
CrossRef
Google scholar
|
[78] |
Wang PY, Neretti N, Whitaker R, Hosier S, Chang C, Lu D, Rogina B, Helfand SL (2009) Long-lived Indy and calorie restriction interact to extend life span. Proc Natl Acad Sci USA106: 9262-9267
CrossRef
Google scholar
|
[79] |
Watt NT, Whitehouse IJ, Hooper NM (2011) The role of zinc in alzheimer’s disease. Int J Alzheimer’s Dis. Article ID 971021.
CrossRef
Google scholar
|
[80] |
Wijesekara N, Chimienti F, Wheeler MB (2009) Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes Metab11 (Suppl 4): 202-214
CrossRef
Google scholar
|
[81] |
Wijesekara N, Dai FF, Hardy AB, Giglou PR, Bhattacharjee A, Koshkin V, Chimienti F, Gaisano HY, Rutter GA, Wheeler MB (2010) Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia53: 1656-1668
CrossRef
Google scholar
|
[82] |
Wittwer MB, Zur AA, Khuri N, Kido Y, Kosaka A, Zhang X, Morrissey KM, Sali A, Huang Y, Giacomini KM (2013) Discovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modeling. J Med Chem56: 781-795
CrossRef
Google scholar
|
[83] |
Woodward OM, Kottgen A, Coresh J, Boerwinkle E, Guggino WB, Kottgen M (2009) Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci USA106: 10338-10342
CrossRef
Google scholar
|
[84] |
Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, Conway SJ, Ganapathy V (1998) Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem273: 32776-32786
CrossRef
Google scholar
|
[85] |
Xu J, Wang J, Chen B (2012a) SLC30A8 (ZnT8) variations and type 2 diabetes in the Chinese Han population. Genet Mol Res11: 1592-1598
CrossRef
Google scholar
|
[86] |
Xu Y, Yan Y, Seeman D, Sun L, Dubin PL (2012b) Multimerization and aggregation of native-state insulin: effect of zinc. Langmuir28: 579-586
CrossRef
Google scholar
|
[87] |
Zhang L, Strong JM, Qiu W, Lesko LJ, Huang SM (2006) Scientific perspectives on drug transporters and their role in drug interactions. Mol Pharm3: 62-69
CrossRef
Google scholar
|
[88] |
Zhou M, Engel K, Wang J (2007) Evidence for significant contribution of a newly identified monoamine transporter (PMAT) to serotonin uptake in the human brain. Biochem Pharmacol1: 147-154
CrossRef
Google scholar
|
/
〈 | 〉 |