VANTAGE POINTS

How does transmembrane electrochemical potential drive the rotation of Fo motor in an ATP synthase?

  • Xuejun C. Zhang ,
  • Min Liu ,
  • Yan Zhao
Expand
  • National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

Published date: 04 Nov 2015

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Cite this article

Xuejun C. Zhang , Min Liu , Yan Zhao . How does transmembrane electrochemical potential drive the rotation of Fo motor in an ATP synthase?[J]. Protein & Cell, 2015 , 6(11) : 784 -791 . DOI: 10.1007/s13238-015-0217-6

1
Abrahams JP (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370(6491): 621−628

DOI

2
Boyer PD (1988) Bioenergetic coupling to protonmotive force: should we be considering hydronium ion coordination and not group protonation? Trends Biochem Sci 13(1): 5−7

DOI

3
Boyer PD (1993) The binding change mechanism for ATP synthase−some probabilities and possibilities. Biochim Biophys Acta 1140(3): 215−250

DOI

4
Dimroth P (2003) Electrical power fuels rotary ATP synthase. Structure 11(12): 1469−1473

DOI

5
Fillingame RH, Steed PR (2014) Half channels mediating H(+) transport and the mechanism of gating in the Fo sector of Escherichia coli F1Fo ATP synthase. Biochim Biophys Acta 1837(7): 1063−1068

DOI

6
Gruber G (2014) ATP synthases from archaea: the beauty of a molecular motor. Biochim Biophys Acta 1837(6): 940−952

DOI

7
Holliday LS (2000) The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J Biol Chem 275(41): 32331−32337

DOI

8
Junge W, Lill H, Engelbrecht S (1997) ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci 22(11): 420−423

DOI

9
Lau WC, Rubinstein JL (2012) Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 481(7380): 214−218

DOI

10
Lightowlers RN (1987) The proton pore in the Escherichia coli F0F1-ATPase: a requirement for arginine at position 210 of the a-subunit. Biochim Biophys Acta 894(3): 399−406

DOI

11
Liu X (2009) Crystal structure of the hexamer of human heat shock factor binding protein 1. Proteins 75(1): 1−11

DOI

12
Miller MJ, Oldenburg M, Fillingame RH (1990) The essential carboxyl group in subunit c of the F1F0 ATP synthase can be moved and H(+)-translocating function retained. Proc Natl Acad Sci U S A 87(13): 4900−4904

DOI

13
Minagawa Y (2013) Basic properties of rotary dynamics of the molecular motor Enterococcus hirae<?Pub Caret?>V1-ATPase. J Biol Chem 288(45): 32700−32707

DOI

14
Nakamoto RK, Baylis Scanlon JA, Al-Shawi MK (2008) The rotary mechanism of the ATP synthase. Arch Biochem Biophys 476(1): 43−50

DOI

15
Nakano T (2006) A new solution structure of ATP synthase subunit c from thermophilic Bacillus PS3, suggesting a local conformational change for H+-translocation. J Mol Biol 358(1): 132−144

DOI

16
Noji H (1997) Direct observation of the rotation of F1-ATPase. Nature 386(6622): 299−302

DOI

17
Pogoryelov D (2009) High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 16(10): 1068−1073

DOI

18
Silverstein TP (2014) An exploration of how the thermodynamic efficiency of bioenergetic membrane systems varies with c-subunit stoichiometry of F(1)F(0) ATP synthases. J Bioenerg Biomembr 46(3): 229−241

DOI

19
Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286(5445): 1700−1705

DOI

20
Symersky J (2012) Structure of the c(10) ring of the yeast mitochondrial ATP synthase in the open conformation. Nat Struct Mol Biol 19(5): 485−491 S1

21
Valiyaveetil FI, Fillingame RH (1997) On the role of Arg-210 and Glu- 219 of subunit a in proton translocation by the Escherichia coli F0F1-ATP synthase. J Biol Chem 272(51): 32635−32641

DOI

22
von Ballmoos C, Dimroth P (2007) Two distinct proton binding sites in the ATP synthase family. Biochemistry 46(42): 11800−11809

DOI

23
Zhang XC (2014) Proton transfer-mediated GPCR activation. Protein Cell 6(1): 13−17

24
Zhang XC (2015a) Energy coupling mechanisms of MFS transporters. Protein Sci 24(10): 1560−1579

DOI

25
Zhang XC, Han L, Zhao Y (2015b) Thermodynamics of ABC transporters. . Protein Cell.

DOI

26
Zhao J, Benlekbir S, Rubinstein JL (2015) Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521(7551): 241−245

DOI

27
Zhu G (2007) Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5. EMBO J 26(14): 3484−3493

DOI

Outlines

/