REVIEW

Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions

  • Yufei Yang ,
  • Mo Hu ,
  • Kaiwen Yu ,
  • Xiangmei Zeng ,
  • Xiaoyun Liu
Expand
  • Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

Received date: 25 Dec 2014

Accepted date: 21 Jan 2015

Published date: 13 Apr 2015

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Elucidation of molecular mechanisms underlying hostpathogen interactions is important for control and treatment of infectious diseases worldwide. Within the last decade, mass spectrometry (MS)-based proteomics has become a powerful and effective approach to better understand complex and dynamic host-pathogen interactions at the protein level. Herein we will review the recent progress in proteomic analyses towards bacterial infection of their mammalian host with a particular focus on enteric pathogens. Large-scale studies of dynamic proteomic alterations during infection will be discussed from the perspective of both pathogenic bacteria and host cells.

Cite this article

Yufei Yang , Mo Hu , Kaiwen Yu , Xiangmei Zeng , Xiaoyun Liu . Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions[J]. Protein & Cell, 2015 , 6(4) : 265 -274 . DOI: 10.1007/s13238-015-0136-6

1
Adkins JN, Mottaz HM, Norbeck AD, Gustin JK, Rue J, Clauss TRW, Purvine SO, Rodland KD, Heffron F, Smith RD (2006) Analysis of the Salmonella Typhimurium proteome through environmental response toward infectious conditions. Mol Cell Proteomics5: 1450-1461

DOI

2
Albrethsen J, Agner J, Piersma SR, Hojrup P, Pham TV, Weldingh K, Jimenez CR, Andersen P, Rosenkrands I (2013) Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems. Mol Cell Proteomics12: 1180-1191

DOI

3
Ansong C, Yoon H, Norbeck AD, Gustin JK, McDermott JE, Mottaz HM, Rue J, Adkins JN, Heffron F, Smith RD (2008) Proteomics analysis of the causative agent of typhoid fever. J Proteome Res7: 546-557

DOI

4
Ansong C, Yoon H, Porwollik S, Mottaz-Brewer H, Petritis BO, Jaitly N, Adkins JN, McClelland M, Heffron F, Smith RD (2009) Global systems-level analysis of Hfq and SmpB deletion mutants in Salmonella: implications for virulence and global protein translation. PLoS One4: e4809

DOI

5
Becker D, Selbach M, Rollenhagen C, Ballmaier M, Meyer TF, Mann M, Bumann D (2006) Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature440: 303-307

DOI

6
Brown RN, Sanford JA, Park JH, Deatherage BL, Champion BL, Smith RD, Heffron F, Adkins JN (2012) A comprehensive subcellular proteomic survey of Salmonella grown under phagosome-mimicking versus standard laboratory conditions. Int J Proteomics2012: 123076

DOI

7
Bumann D (2009) System-level analysis of Salmonella metabolism during infection. Curr Opin Microbiol12: 559-567

DOI

8
Cash P (2011) Investigating pathogen biology at the level of the proteome. Proteomics11: 3190-3202

DOI

9
Cossart P, Sansonetti PJ (2004) Bacterial invasion: The paradigms of enteroinvasive pathogens. Science304: 242-248

DOI

10
Cravatt BF, Simon GM, Yates JR (2007) The biological impact of mass-spectrometry-based proteomics. Nature450: 991-1000

DOI

11
Cui J, Yao Q, Li S, Ding X, Lu Q, Mao H, Liu L, Zheng N, Chen S, Shao F (2010) Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science329: 1215-1218

DOI

12
Curreem SO, Watt RM, Lau SK, Woo PC (2012) Two-dimensional gel electrophoresis in bacterial proteomics. Protein Cell3: 346-363

DOI

13
Di Pasqua R, Mamone G, Ferranti P, Ercolini D, Mauriello G (2010) Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics10: 1040-1049

14
Ding C, Jiang J, Wei J, Liu W, Zhang W, Liu M, Fu T, Lu T, Song L, Ying W (2013) A fast workflow for identification and quantification of proteomes. Mol Cell Proteomics12: 2370-2380

DOI

15
Engel P, Goepfert A, Stanger FV, Harms A, Schmidt A, Schirmer T, Dehio C (2012) Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins. Nature482: 107-110

DOI

16
Fernandez-Arenas E, Cabezon V, Bermejo C, Arroyo J, Nombela C, Diez-Orejas R, Gil C (2007) Intergrated proteomics and genomics strategies bring new insight into Candida albicans response upon macrophage interaction. Mol Cell Proteomics6: 460-478

DOI

17
Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev15: 506-526

DOI

18
Galan JE, Wolf-Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature444: 567-573

DOI

19
Geiger T, Wehner A, Schaab C, Cox J, Mann M (2012) Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics11(M111): 014050

DOI

20
Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechol17: 994-999

DOI

21
Haraga A, Ohlson MB, Miller SI (2008) Salmonellae interplay with host cells. Nat Rev Microbiol6: 53-66

DOI

22
Hardwidge PR, Rodriguez-Escudero I, Goode D, Donohoe S, Eng J, Goodlett DR, Aebersold R, Finlay BB (2004) Proteomic analysis of the intestinal epithelial cell response to enteropathogenic Escherichia coli. J Biol Chem279: 20127-20136

DOI

23
Hartlova A, Krocova Z, Cerveny L, Stulik J (2011) A proteomic view of the host-pathogen interaction: the host perspective. Proteomics11: 3212-3220

DOI

24
Hoffmann C, Finsel I, Otto A, Pfaffinger G, Rothmeier E, Hecker M, Becher D, Hilbi H (2014) Functional analysis of novel Rab GTPase identified in the proteome of purified Legionella-containing vacuoles from macrophages. Cell Microbiol16: 1034-1052

25
Imami K, Bhavsar AP, Yu H, Brown NF, Rogers LD, Finlay BB, Foster LJ (2013) Global impact of Salmonella Pathogenicity Island 2-secreted effectors on the host phosphoproteome. Mol Cell Proteomics12: 1632-1643

DOI

26
Ingmundson A, Delprato A, Lambright DG, Roy CR (2007) Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature450: 365-369

DOI

27
Jafari M, Primo V, Smejkal GB, Moskovets EV, Kuo WP, Ivanov AR (2012) Comparison of in-gel protein separation techniques commonly used for fractionation in mass spectrometry-based proteomic profiling. Electrophoresis33: 2516-2526

DOI

28
Jenner RG, Young RA (2005) Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3: 281-294

DOI

29
Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia coli. Nat Rev Microbiol2: 123-140

DOI

30
Khabbaz RF, Moseley RR, Steiner RJ, Levitt AM, Bell BP (2014) Challenges of infectious diseases in the USA. Lancet384: 53-63

DOI

31
Kim K, Yang E, Vu GP, Gong H, Su J, Liu F, Lu S (2010) Mass spectrometry-based quantitative proteomic analysis of Salmonella enterica serovar enteritidis protein expression upon exposure to hydrogen peroxide. BMC Microbiol10: 166

DOI

32
Kotloff KL, Winichoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ, Adak GK, Levine MM (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ77: 651-666

33
Kuntumalla S, Zhang Q, Braisted JC, Fleischmann RD, Peterson SN, Donohue-Rolfe A, Tzipori S, Pieper R (2011) In vivo versus in vitro protein abundance analysis of Shigella dysenteriae type 1 reveals changes in the expression of proteins involved in virulence, stress and energy metabolism. BMC Microbiol11: 147

DOI

34
Li Q (2011) Phagosome proteomics: a powerful tool to assess bacteria-mediated immunomodulation. Bioeng Bugs2: 194-198

DOI

35
Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou J, Shao F (2007) The phosphothreonine lyase activity of a bacterial type III effector family. Science315: 1000-1003

DOI

36
Li S, Zhang L, Yao Q, Li L, Dong N, Rong J, Gao W, Ding X, Sun L, Chen X (2013) Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature501: 242-246

DOI

37
Liu X, Gao B, Novik V, Galan JE (2012) Quantitative proteomics of intracellular Campylobacter jejuni reveals metabolic reprogramming. PLoS Pathog8: e1002562

DOI

38
Machner MP, Isberg RR (2007) A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science318: 974-977

DOI

39
Mukherjee S, Liu X, Arasaki K, McDonough J, Galan JE, Roy CR (2011) Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature477: 103-106

DOI

40
Muller MP, Peters H, Bluemer J, Blankenfeldt W, Goody RS, Itzen A (2010) The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science329: 946-949

DOI

41
Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, Roy CR (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol8: 971-977

DOI

42
Neunuebel MR, Chen Y, Gasper AH, Backlund PS Jr, Yergey A, Machner MP (2011) De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science333: 453-456

DOI

43
Ohl ME, Miller SI (2001) Salmonella: a model for bacterial pathogenesis. Annu Rev Med52: 259-274

DOI

44
Paape D, Lippuner C, Schmid M, Ackermann R, Barrios-Llerena ME, Zimny-Arndt U, Brinkmann V, Arndt B, Pleissner KP, Jungblut PR (2008) Transgenic, fluorescent Leishmania mexicana allow direct analysis of the proteome of intracellular amastigotes. Mol Cell Proteomics7: 1688-1701

DOI

45
Pieper R, Zhang Q, Parmar PP, Huang ST, Clark DJ, Alami H, Donohue-Rolfe A, Fleischmann RD, Peterson SN, Tzipori S (2009) The Shigella dysenteriae serotype 1 proteome, profiled in the host intestinal environment, reveals major metabolic modifications and increased expression of invasive proteins. Proteomics9: 5029-5045

DOI

46
Pieper R, Fisher CR, Suh MJ, Huang ST, Parmar P, Payne SM (2013) Analysis of the proteome of intracellular Shigella flexneri reveals pathways important for intracellular growth. Infect Immun81: 4635-4648

DOI

47
Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics73: 2064-2077

DOI

48
Rogers LD, Brown NF, Fang Y, Pelech S, Foster LJ (2011) Phosphoproteomic Analysis of Salmonella-infected cells identifies key kinase regulators and SopB-dependent host phosphorylation events. Sci Signal4: 1-13

DOI

49
Salomon D, Orth K (2013) What pathogens have taught us about posttranslational modifications. Cell Host Microbe14: 269-279

DOI

50
Schmidt F, Volker U (2011) Proteome analysis of host-pathogen interactions: investigation of pathogen responses to the host cell environment. Proteomics11: 3203-3211

DOI

51
Schmutz C, Ahrne E, Kasper CA, Tschon T, Sorg I, Dreier RF, Schmidt A, Arrieumerlou C (2013) Systems-level overview of host protein phosphorylation during Shigella flexneri infection revealed by phosphoproteomics. Mol Cell Proteomics12: 2952-2968

DOI

52
Schoebel S, Oesterlin LK, Blankenfeldt W, Goody RS, Itzen A (2009) RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol Cell36: 1060-1072

DOI

53
Sengupta N, Alam SI (2011) In vivo studies of Clostridium perfringens in mouse gas gangrene model. Curr Microbiol62: 999-1008

DOI

54
Sherwood RK, Roy CR (2013) A Rab-centric perspective of bacterial pathogen-occupied vacuoles. Cell Host Microbe14: 256-268

DOI

55
Shi L, Adkins JN, Coleman JR, Schepmoes AA, Dohnkova A, Mottaz HM, Norbeck AD, Purvine SO, Manes NP, Smallwood HS (2006) Proteomic analysis of Salmonella enterica serovar Typhimurium isolated from RAW 264.7 macrophages – Identification of a novel protein that contributes to the replication of serovar Typhimurium inside macrophages. J Biol Chem281: 29131-29140

DOI

56
Shi L, Ansong C, Smallwood H, Rommereim L, McDermott JE, Brewer HM, Norbeck AD, Taylor RC, Gustin JK, Heffron F (2009a) Proteome of Salmonella enterica serotype Typhimurium grown in a low Mg/pH medium. J Proteomics Bioinform2: 388-397

DOI

57
Shi L, Chowdhury SM, Smallwood HS, Yoon H, Mottaz-Brewer HM, Norbeck AD, McDermott JE, Clauss TRW, Heffron F, Smith RD (2009b) Proteomic investigation of the time course responses of RAW 264.7 macrophages to infection with Salmonella enterica. Infect Immun77: 3227-3233

DOI

58
Sonck KAJ, Kint G, Schoofs G, Vander Wauven C, Vanderleyden J, De Keersmaecker SCJ (2009) The proteome of Salmonella Typhimurium grown under in vivo-mimicking conditions. Proteomics9: 565-579

DOI

59
Stancik LM, Stancik DM, Schmidt B, Barnhart DM, Yoncheva YN, Slonczewski JL (2002) pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J Bacteriol184: 4246-4258

DOI

60
Suh MJ, Kuntumalla S, Yu Y, Pieper R (2014) Proteomes of pathogenic Escherichia coli/Shigella group surveyed in their host environments. Expert Rev Proteomics11: 593-609

DOI

61
Tan Y, Luo Z (2011) Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature475: 506-509

DOI

62
Tan Y, Arnold RJ, Luo Z (2011) Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci USA108: 21212-21217

DOI

63
Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics9: 1451-1468

DOI

64
Twine SM, Mykytczuk NCS, Petit MD, Shen H, Sjostedt A, Conlan JW, Kelly JF (2006) In vivo proteomic analysis of the intracellular bacterial pathogen, Francisella tularensis, isolated from mouse spleen. Biochem Biophys Res Commun345: 1621-1633

DOI

65
Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN, Aeversold R, Hilbi H (2009) Proteome analysis of Legiobella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic10: 76-87

DOI

66
Walduck A, Rudel T, Meyer TF (2004) Proteomic and gene profiling approaches to study host responses to bacterial infection. Curr Opin Microbiol7: 33-38

DOI

67
Weber A, Kogl SA, Jung K (2006) Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J Bacteriol188: 7165-7175

DOI

68
Weekes MP, Tomasec P, Huttlin EL, Fielding CA, Nusinow D, Stanton RJ, Wang EC, Aicheler R, Murrell I, Wilkinson GW (2014) Quantitative temporal viromics: an approach to investigate host-pathogen interaction. Cell157: 1460-1472

DOI

69
Worby CA, Mattoo S, Kruger RP, Corbeil LB, Koller A, Mendez JC, Zekarias B, Lazar C, Dixon JE (2009) The fic domain: regulation of cell signaling by adenylylation. Mol Cell34: 93-103

DOI

70
Yarbrough ML, Li Y, Kinch LN, Grishin NV, Ball HL, Orth K (2009) AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science323: 269-272

DOI

71
Yohannes E, Barnhart DM, Slonczewski JL (2004) pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J Bacteriol186: 192-199

DOI

72
Yu J, Guo L (2011) Quantitative proteomic analysis of Salmonella enterica serovar Typhimurium under PhoP/PhoQ activation conditions. J Proteome Res10: 2992-3002

DOI

73
Zhang CG, Chromy BA, McCutchen-Maloney SL (2005) Hostpathogen interactions: a proteomic view. Expert Rev Proteomics2: 187-202

DOI

74
Zhang L, Ding X, Cui J, Xu H, Chen J, Gong Y, Hu L, Zhou Y, Ge J, Lu Q (2011) Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation. Nature481: 204-208

DOI

75
Zhu L, Zhao G, Stein R, Zheng X, Hu W, Shang N, Bu X, Liu X, Wang J, Feng E (2010) The proteome of Shigella flexneri 2a 2457T grown at 30 and 37°. Mol Cell Proteomics9: 1209-1220

DOI

Outlines

/