Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions

Yufei Yang, Mo Hu, Kaiwen Yu, Xiangmei Zeng, Xiaoyun Liu

PDF(429 KB)
PDF(429 KB)
Protein Cell ›› 2015, Vol. 6 ›› Issue (4) : 265-274. DOI: 10.1007/s13238-015-0136-6
REVIEW
REVIEW

Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions

Author information +
History +

Abstract

Elucidation of molecular mechanisms underlying hostpathogen interactions is important for control and treatment of infectious diseases worldwide. Within the last decade, mass spectrometry (MS)-based proteomics has become a powerful and effective approach to better understand complex and dynamic host-pathogen interactions at the protein level. Herein we will review the recent progress in proteomic analyses towards bacterial infection of their mammalian host with a particular focus on enteric pathogens. Large-scale studies of dynamic proteomic alterations during infection will be discussed from the perspective of both pathogenic bacteria and host cells.

Keywords

mass spectrometry / proteomics / bacterial infection / host-pathogen interactions

Cite this article

Download citation ▾
Yufei Yang, Mo Hu, Kaiwen Yu, Xiangmei Zeng, Xiaoyun Liu. Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions. Protein Cell, 2015, 6(4): 265‒274 https://doi.org/10.1007/s13238-015-0136-6

References

[1]
Adkins JN, Mottaz HM, Norbeck AD, Gustin JK, Rue J, Clauss TRW, Purvine SO, Rodland KD, Heffron F, Smith RD (2006) Analysis of the Salmonella Typhimurium proteome through environmental response toward infectious conditions. Mol Cell Proteomics5: 1450-1461
CrossRef Google scholar
[2]
Albrethsen J, Agner J, Piersma SR, Hojrup P, Pham TV, Weldingh K, Jimenez CR, Andersen P, Rosenkrands I (2013) Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems. Mol Cell Proteomics12: 1180-1191
CrossRef Google scholar
[3]
Ansong C, Yoon H, Norbeck AD, Gustin JK, McDermott JE, Mottaz HM, Rue J, Adkins JN, Heffron F, Smith RD (2008) Proteomics analysis of the causative agent of typhoid fever. J Proteome Res7: 546-557
CrossRef Google scholar
[4]
Ansong C, Yoon H, Porwollik S, Mottaz-Brewer H, Petritis BO, Jaitly N, Adkins JN, McClelland M, Heffron F, Smith RD (2009) Global systems-level analysis of Hfq and SmpB deletion mutants in Salmonella: implications for virulence and global protein translation. PLoS One4: e4809
CrossRef Google scholar
[5]
Becker D, Selbach M, Rollenhagen C, Ballmaier M, Meyer TF, Mann M, Bumann D (2006) Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature440: 303-307
CrossRef Google scholar
[6]
Brown RN, Sanford JA, Park JH, Deatherage BL, Champion BL, Smith RD, Heffron F, Adkins JN (2012) A comprehensive subcellular proteomic survey of Salmonella grown under phagosome-mimicking versus standard laboratory conditions. Int J Proteomics2012: 123076
CrossRef Google scholar
[7]
Bumann D (2009) System-level analysis of Salmonella metabolism during infection. Curr Opin Microbiol12: 559-567
CrossRef Google scholar
[8]
Cash P (2011) Investigating pathogen biology at the level of the proteome. Proteomics11: 3190-3202
CrossRef Google scholar
[9]
Cossart P, Sansonetti PJ (2004) Bacterial invasion: The paradigms of enteroinvasive pathogens. Science304: 242-248
CrossRef Google scholar
[10]
Cravatt BF, Simon GM, Yates JR (2007) The biological impact of mass-spectrometry-based proteomics. Nature450: 991-1000
CrossRef Google scholar
[11]
Cui J, Yao Q, Li S, Ding X, Lu Q, Mao H, Liu L, Zheng N, Chen S, Shao F (2010) Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science329: 1215-1218
CrossRef Google scholar
[12]
Curreem SO, Watt RM, Lau SK, Woo PC (2012) Two-dimensional gel electrophoresis in bacterial proteomics. Protein Cell3: 346-363
CrossRef Google scholar
[13]
Di Pasqua R, Mamone G, Ferranti P, Ercolini D, Mauriello G (2010) Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics10: 1040-1049
[14]
Ding C, Jiang J, Wei J, Liu W, Zhang W, Liu M, Fu T, Lu T, Song L, Ying W (2013) A fast workflow for identification and quantification of proteomes. Mol Cell Proteomics12: 2370-2380
CrossRef Google scholar
[15]
Engel P, Goepfert A, Stanger FV, Harms A, Schmidt A, Schirmer T, Dehio C (2012) Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins. Nature482: 107-110
CrossRef Google scholar
[16]
Fernandez-Arenas E, Cabezon V, Bermejo C, Arroyo J, Nombela C, Diez-Orejas R, Gil C (2007) Intergrated proteomics and genomics strategies bring new insight into Candida albicans response upon macrophage interaction. Mol Cell Proteomics6: 460-478
CrossRef Google scholar
[17]
Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev15: 506-526
CrossRef Google scholar
[18]
Galan JE, Wolf-Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature444: 567-573
CrossRef Google scholar
[19]
Geiger T, Wehner A, Schaab C, Cox J, Mann M (2012) Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics11(M111): 014050
CrossRef Google scholar
[20]
Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechol17: 994-999
CrossRef Google scholar
[21]
Haraga A, Ohlson MB, Miller SI (2008) Salmonellae interplay with host cells. Nat Rev Microbiol6: 53-66
CrossRef Google scholar
[22]
Hardwidge PR, Rodriguez-Escudero I, Goode D, Donohoe S, Eng J, Goodlett DR, Aebersold R, Finlay BB (2004) Proteomic analysis of the intestinal epithelial cell response to enteropathogenic Escherichia coli. J Biol Chem279: 20127-20136
CrossRef Google scholar
[23]
Hartlova A, Krocova Z, Cerveny L, Stulik J (2011) A proteomic view of the host-pathogen interaction: the host perspective. Proteomics11: 3212-3220
CrossRef Google scholar
[24]
Hoffmann C, Finsel I, Otto A, Pfaffinger G, Rothmeier E, Hecker M, Becher D, Hilbi H (2014) Functional analysis of novel Rab GTPase identified in the proteome of purified Legionella-containing vacuoles from macrophages. Cell Microbiol16: 1034-1052
[25]
Imami K, Bhavsar AP, Yu H, Brown NF, Rogers LD, Finlay BB, Foster LJ (2013) Global impact of Salmonella Pathogenicity Island 2-secreted effectors on the host phosphoproteome. Mol Cell Proteomics12: 1632-1643
CrossRef Google scholar
[26]
Ingmundson A, Delprato A, Lambright DG, Roy CR (2007) Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature450: 365-369
CrossRef Google scholar
[27]
Jafari M, Primo V, Smejkal GB, Moskovets EV, Kuo WP, Ivanov AR (2012) Comparison of in-gel protein separation techniques commonly used for fractionation in mass spectrometry-based proteomic profiling. Electrophoresis33: 2516-2526
CrossRef Google scholar
[28]
Jenner RG, Young RA (2005) Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3: 281-294
CrossRef Google scholar
[29]
Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia coli. Nat Rev Microbiol2: 123-140
CrossRef Google scholar
[30]
Khabbaz RF, Moseley RR, Steiner RJ, Levitt AM, Bell BP (2014) Challenges of infectious diseases in the USA. Lancet384: 53-63
CrossRef Google scholar
[31]
Kim K, Yang E, Vu GP, Gong H, Su J, Liu F, Lu S (2010) Mass spectrometry-based quantitative proteomic analysis of Salmonella enterica serovar enteritidis protein expression upon exposure to hydrogen peroxide. BMC Microbiol10: 166
CrossRef Google scholar
[32]
Kotloff KL, Winichoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ, Adak GK, Levine MM (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ77: 651-666
[33]
Kuntumalla S, Zhang Q, Braisted JC, Fleischmann RD, Peterson SN, Donohue-Rolfe A, Tzipori S, Pieper R (2011) In vivo versus in vitro protein abundance analysis of Shigella dysenteriae type 1 reveals changes in the expression of proteins involved in virulence, stress and energy metabolism. BMC Microbiol11: 147
CrossRef Google scholar
[34]
Li Q (2011) Phagosome proteomics: a powerful tool to assess bacteria-mediated immunomodulation. Bioeng Bugs2: 194-198
CrossRef Google scholar
[35]
Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou J, Shao F (2007) The phosphothreonine lyase activity of a bacterial type III effector family. Science315: 1000-1003
CrossRef Google scholar
[36]
Li S, Zhang L, Yao Q, Li L, Dong N, Rong J, Gao W, Ding X, Sun L, Chen X (2013) Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature501: 242-246
CrossRef Google scholar
[37]
Liu X, Gao B, Novik V, Galan JE (2012) Quantitative proteomics of intracellular Campylobacter jejuni reveals metabolic reprogramming. PLoS Pathog8: e1002562
CrossRef Google scholar
[38]
Machner MP, Isberg RR (2007) A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science318: 974-977
CrossRef Google scholar
[39]
Mukherjee S, Liu X, Arasaki K, McDonough J, Galan JE, Roy CR (2011) Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature477: 103-106
CrossRef Google scholar
[40]
Muller MP, Peters H, Bluemer J, Blankenfeldt W, Goody RS, Itzen A (2010) The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science329: 946-949
CrossRef Google scholar
[41]
Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, Roy CR (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol8: 971-977
CrossRef Google scholar
[42]
Neunuebel MR, Chen Y, Gasper AH, Backlund PS Jr, Yergey A, Machner MP (2011) De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science333: 453-456
CrossRef Google scholar
[43]
Ohl ME, Miller SI (2001) Salmonella: a model for bacterial pathogenesis. Annu Rev Med52: 259-274
CrossRef Google scholar
[44]
Paape D, Lippuner C, Schmid M, Ackermann R, Barrios-Llerena ME, Zimny-Arndt U, Brinkmann V, Arndt B, Pleissner KP, Jungblut PR (2008) Transgenic, fluorescent Leishmania mexicana allow direct analysis of the proteome of intracellular amastigotes. Mol Cell Proteomics7: 1688-1701
CrossRef Google scholar
[45]
Pieper R, Zhang Q, Parmar PP, Huang ST, Clark DJ, Alami H, Donohue-Rolfe A, Fleischmann RD, Peterson SN, Tzipori S (2009) The Shigella dysenteriae serotype 1 proteome, profiled in the host intestinal environment, reveals major metabolic modifications and increased expression of invasive proteins. Proteomics9: 5029-5045
CrossRef Google scholar
[46]
Pieper R, Fisher CR, Suh MJ, Huang ST, Parmar P, Payne SM (2013) Analysis of the proteome of intracellular Shigella flexneri reveals pathways important for intracellular growth. Infect Immun81: 4635-4648
CrossRef Google scholar
[47]
Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics73: 2064-2077
CrossRef Google scholar
[48]
Rogers LD, Brown NF, Fang Y, Pelech S, Foster LJ (2011) Phosphoproteomic Analysis of Salmonella-infected cells identifies key kinase regulators and SopB-dependent host phosphorylation events. Sci Signal4: 1-13
CrossRef Google scholar
[49]
Salomon D, Orth K (2013) What pathogens have taught us about posttranslational modifications. Cell Host Microbe14: 269-279
CrossRef Google scholar
[50]
Schmidt F, Volker U (2011) Proteome analysis of host-pathogen interactions: investigation of pathogen responses to the host cell environment. Proteomics11: 3203-3211
CrossRef Google scholar
[51]
Schmutz C, Ahrne E, Kasper CA, Tschon T, Sorg I, Dreier RF, Schmidt A, Arrieumerlou C (2013) Systems-level overview of host protein phosphorylation during Shigella flexneri infection revealed by phosphoproteomics. Mol Cell Proteomics12: 2952-2968
CrossRef Google scholar
[52]
Schoebel S, Oesterlin LK, Blankenfeldt W, Goody RS, Itzen A (2009) RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol Cell36: 1060-1072
CrossRef Google scholar
[53]
Sengupta N, Alam SI (2011) In vivo studies of Clostridium perfringens in mouse gas gangrene model. Curr Microbiol62: 999-1008
CrossRef Google scholar
[54]
Sherwood RK, Roy CR (2013) A Rab-centric perspective of bacterial pathogen-occupied vacuoles. Cell Host Microbe14: 256-268
CrossRef Google scholar
[55]
Shi L, Adkins JN, Coleman JR, Schepmoes AA, Dohnkova A, Mottaz HM, Norbeck AD, Purvine SO, Manes NP, Smallwood HS (2006) Proteomic analysis of Salmonella enterica serovar Typhimurium isolated from RAW 264.7 macrophages – Identification of a novel protein that contributes to the replication of serovar Typhimurium inside macrophages. J Biol Chem281: 29131-29140
CrossRef Google scholar
[56]
Shi L, Ansong C, Smallwood H, Rommereim L, McDermott JE, Brewer HM, Norbeck AD, Taylor RC, Gustin JK, Heffron F (2009a) Proteome of Salmonella enterica serotype Typhimurium grown in a low Mg/pH medium. J Proteomics Bioinform2: 388-397
CrossRef Google scholar
[57]
Shi L, Chowdhury SM, Smallwood HS, Yoon H, Mottaz-Brewer HM, Norbeck AD, McDermott JE, Clauss TRW, Heffron F, Smith RD (2009b) Proteomic investigation of the time course responses of RAW 264.7 macrophages to infection with Salmonella enterica. Infect Immun77: 3227-3233
CrossRef Google scholar
[58]
Sonck KAJ, Kint G, Schoofs G, Vander Wauven C, Vanderleyden J, De Keersmaecker SCJ (2009) The proteome of Salmonella Typhimurium grown under in vivo-mimicking conditions. Proteomics9: 565-579
CrossRef Google scholar
[59]
Stancik LM, Stancik DM, Schmidt B, Barnhart DM, Yoncheva YN, Slonczewski JL (2002) pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J Bacteriol184: 4246-4258
CrossRef Google scholar
[60]
Suh MJ, Kuntumalla S, Yu Y, Pieper R (2014) Proteomes of pathogenic Escherichia coli/Shigella group surveyed in their host environments. Expert Rev Proteomics11: 593-609
CrossRef Google scholar
[61]
Tan Y, Luo Z (2011) Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature475: 506-509
CrossRef Google scholar
[62]
Tan Y, Arnold RJ, Luo Z (2011) Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci USA108: 21212-21217
CrossRef Google scholar
[63]
Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics9: 1451-1468
CrossRef Google scholar
[64]
Twine SM, Mykytczuk NCS, Petit MD, Shen H, Sjostedt A, Conlan JW, Kelly JF (2006) In vivo proteomic analysis of the intracellular bacterial pathogen, Francisella tularensis, isolated from mouse spleen. Biochem Biophys Res Commun345: 1621-1633
CrossRef Google scholar
[65]
Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN, Aeversold R, Hilbi H (2009) Proteome analysis of Legiobella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic10: 76-87
CrossRef Google scholar
[66]
Walduck A, Rudel T, Meyer TF (2004) Proteomic and gene profiling approaches to study host responses to bacterial infection. Curr Opin Microbiol7: 33-38
CrossRef Google scholar
[67]
Weber A, Kogl SA, Jung K (2006) Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J Bacteriol188: 7165-7175
CrossRef Google scholar
[68]
Weekes MP, Tomasec P, Huttlin EL, Fielding CA, Nusinow D, Stanton RJ, Wang EC, Aicheler R, Murrell I, Wilkinson GW (2014) Quantitative temporal viromics: an approach to investigate host-pathogen interaction. Cell157: 1460-1472
CrossRef Google scholar
[69]
Worby CA, Mattoo S, Kruger RP, Corbeil LB, Koller A, Mendez JC, Zekarias B, Lazar C, Dixon JE (2009) The fic domain: regulation of cell signaling by adenylylation. Mol Cell34: 93-103
CrossRef Google scholar
[70]
Yarbrough ML, Li Y, Kinch LN, Grishin NV, Ball HL, Orth K (2009) AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science323: 269-272
CrossRef Google scholar
[71]
Yohannes E, Barnhart DM, Slonczewski JL (2004) pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J Bacteriol186: 192-199
CrossRef Google scholar
[72]
Yu J, Guo L (2011) Quantitative proteomic analysis of Salmonella enterica serovar Typhimurium under PhoP/PhoQ activation conditions. J Proteome Res10: 2992-3002
CrossRef Google scholar
[73]
Zhang CG, Chromy BA, McCutchen-Maloney SL (2005) Hostpathogen interactions: a proteomic view. Expert Rev Proteomics2: 187-202
CrossRef Google scholar
[74]
Zhang L, Ding X, Cui J, Xu H, Chen J, Gong Y, Hu L, Zhou Y, Ge J, Lu Q (2011) Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation. Nature481: 204-208
CrossRef Google scholar
[75]
Zhu L, Zhao G, Stein R, Zheng X, Hu W, Shang N, Bu X, Liu X, Wang J, Feng E (2010) The proteome of Shigella flexneri 2a 2457T grown at 30 and 37°. Mol Cell Proteomics9: 1209-1220
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AI Summary AI Mindmap
PDF(429 KB)

Accesses

Citations

Detail

Sections
Recommended

/