Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions
Yufei Yang, Mo Hu, Kaiwen Yu, Xiangmei Zeng, Xiaoyun Liu
Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions
Elucidation of molecular mechanisms underlying hostpathogen interactions is important for control and treatment of infectious diseases worldwide. Within the last decade, mass spectrometry (MS)-based proteomics has become a powerful and effective approach to better understand complex and dynamic host-pathogen interactions at the protein level. Herein we will review the recent progress in proteomic analyses towards bacterial infection of their mammalian host with a particular focus on enteric pathogens. Large-scale studies of dynamic proteomic alterations during infection will be discussed from the perspective of both pathogenic bacteria and host cells.
mass spectrometry / proteomics / bacterial infection / host-pathogen interactions
[1] |
Adkins JN, Mottaz HM, Norbeck AD, Gustin JK, Rue J, Clauss TRW, Purvine SO, Rodland KD, Heffron F, Smith RD (2006) Analysis of the Salmonella Typhimurium proteome through environmental response toward infectious conditions. Mol Cell Proteomics5: 1450-1461
CrossRef
Google scholar
|
[2] |
Albrethsen J, Agner J, Piersma SR, Hojrup P, Pham TV, Weldingh K, Jimenez CR, Andersen P, Rosenkrands I (2013) Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems. Mol Cell Proteomics12: 1180-1191
CrossRef
Google scholar
|
[3] |
Ansong C, Yoon H, Norbeck AD, Gustin JK, McDermott JE, Mottaz HM, Rue J, Adkins JN, Heffron F, Smith RD (2008) Proteomics analysis of the causative agent of typhoid fever. J Proteome Res7: 546-557
CrossRef
Google scholar
|
[4] |
Ansong C, Yoon H, Porwollik S, Mottaz-Brewer H, Petritis BO, Jaitly N, Adkins JN, McClelland M, Heffron F, Smith RD (2009) Global systems-level analysis of Hfq and SmpB deletion mutants in Salmonella: implications for virulence and global protein translation. PLoS One4: e4809
CrossRef
Google scholar
|
[5] |
Becker D, Selbach M, Rollenhagen C, Ballmaier M, Meyer TF, Mann M, Bumann D (2006) Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature440: 303-307
CrossRef
Google scholar
|
[6] |
Brown RN, Sanford JA, Park JH, Deatherage BL, Champion BL, Smith RD, Heffron F, Adkins JN (2012) A comprehensive subcellular proteomic survey of Salmonella grown under phagosome-mimicking versus standard laboratory conditions. Int J Proteomics2012: 123076
CrossRef
Google scholar
|
[7] |
Bumann D (2009) System-level analysis of Salmonella metabolism during infection. Curr Opin Microbiol12: 559-567
CrossRef
Google scholar
|
[8] |
Cash P (2011) Investigating pathogen biology at the level of the proteome. Proteomics11: 3190-3202
CrossRef
Google scholar
|
[9] |
Cossart P, Sansonetti PJ (2004) Bacterial invasion: The paradigms of enteroinvasive pathogens. Science304: 242-248
CrossRef
Google scholar
|
[10] |
Cravatt BF, Simon GM, Yates JR (2007) The biological impact of mass-spectrometry-based proteomics. Nature450: 991-1000
CrossRef
Google scholar
|
[11] |
Cui J, Yao Q, Li S, Ding X, Lu Q, Mao H, Liu L, Zheng N, Chen S, Shao F (2010) Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science329: 1215-1218
CrossRef
Google scholar
|
[12] |
Curreem SO, Watt RM, Lau SK, Woo PC (2012) Two-dimensional gel electrophoresis in bacterial proteomics. Protein Cell3: 346-363
CrossRef
Google scholar
|
[13] |
Di Pasqua R, Mamone G, Ferranti P, Ercolini D, Mauriello G (2010) Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics10: 1040-1049
|
[14] |
Ding C, Jiang J, Wei J, Liu W, Zhang W, Liu M, Fu T, Lu T, Song L, Ying W
CrossRef
Google scholar
|
[15] |
Engel P, Goepfert A, Stanger FV, Harms A, Schmidt A, Schirmer T, Dehio C (2012) Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins. Nature482: 107-110
CrossRef
Google scholar
|
[16] |
Fernandez-Arenas E, Cabezon V, Bermejo C, Arroyo J, Nombela C, Diez-Orejas R, Gil C (2007) Intergrated proteomics and genomics strategies bring new insight into Candida albicans response upon macrophage interaction. Mol Cell Proteomics6: 460-478
CrossRef
Google scholar
|
[17] |
Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev15: 506-526
CrossRef
Google scholar
|
[18] |
Galan JE, Wolf-Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature444: 567-573
CrossRef
Google scholar
|
[19] |
Geiger T, Wehner A, Schaab C, Cox J, Mann M (2012) Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics11(M111): 014050
CrossRef
Google scholar
|
[20] |
Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechol17: 994-999
CrossRef
Google scholar
|
[21] |
Haraga A, Ohlson MB, Miller SI (2008) Salmonellae interplay with host cells. Nat Rev Microbiol6: 53-66
CrossRef
Google scholar
|
[22] |
Hardwidge PR, Rodriguez-Escudero I, Goode D, Donohoe S, Eng J, Goodlett DR, Aebersold R, Finlay BB (2004) Proteomic analysis of the intestinal epithelial cell response to enteropathogenic Escherichia coli. J Biol Chem279: 20127-20136
CrossRef
Google scholar
|
[23] |
Hartlova A, Krocova Z, Cerveny L, Stulik J (2011) A proteomic view of the host-pathogen interaction: the host perspective. Proteomics11: 3212-3220
CrossRef
Google scholar
|
[24] |
Hoffmann C, Finsel I, Otto A, Pfaffinger G, Rothmeier E, Hecker M, Becher D, Hilbi H (2014) Functional analysis of novel Rab GTPase identified in the proteome of purified Legionella-containing vacuoles from macrophages. Cell Microbiol16: 1034-1052
|
[25] |
Imami K, Bhavsar AP, Yu H, Brown NF, Rogers LD, Finlay BB, Foster LJ (2013) Global impact of Salmonella Pathogenicity Island 2-secreted effectors on the host phosphoproteome. Mol Cell Proteomics12: 1632-1643
CrossRef
Google scholar
|
[26] |
Ingmundson A, Delprato A, Lambright DG, Roy CR (2007) Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature450: 365-369
CrossRef
Google scholar
|
[27] |
Jafari M, Primo V, Smejkal GB, Moskovets EV, Kuo WP, Ivanov AR (2012) Comparison of in-gel protein separation techniques commonly used for fractionation in mass spectrometry-based proteomic profiling. Electrophoresis33: 2516-2526
CrossRef
Google scholar
|
[28] |
Jenner RG, Young RA (2005) Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3: 281-294
CrossRef
Google scholar
|
[29] |
Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia coli. Nat Rev Microbiol2: 123-140
CrossRef
Google scholar
|
[30] |
Khabbaz RF, Moseley RR, Steiner RJ, Levitt AM, Bell BP (2014) Challenges of infectious diseases in the USA. Lancet384: 53-63
CrossRef
Google scholar
|
[31] |
Kim K, Yang E, Vu GP, Gong H, Su J, Liu F, Lu S (2010) Mass spectrometry-based quantitative proteomic analysis of Salmonella enterica serovar enteritidis protein expression upon exposure to hydrogen peroxide. BMC Microbiol10: 166
CrossRef
Google scholar
|
[32] |
Kotloff KL, Winichoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ, Adak GK, Levine MM (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ77: 651-666
|
[33] |
Kuntumalla S, Zhang Q, Braisted JC, Fleischmann RD, Peterson SN, Donohue-Rolfe A, Tzipori S, Pieper R (2011) In vivo versus in vitro protein abundance analysis of Shigella dysenteriae type 1 reveals changes in the expression of proteins involved in virulence, stress and energy metabolism. BMC Microbiol11: 147
CrossRef
Google scholar
|
[34] |
Li Q (2011) Phagosome proteomics: a powerful tool to assess bacteria-mediated immunomodulation. Bioeng Bugs2: 194-198
CrossRef
Google scholar
|
[35] |
Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou J, Shao F (2007) The phosphothreonine lyase activity of a bacterial type III effector family. Science315: 1000-1003
CrossRef
Google scholar
|
[36] |
Li S, Zhang L, Yao Q, Li L, Dong N, Rong J, Gao W, Ding X, Sun L, Chen X
CrossRef
Google scholar
|
[37] |
Liu X, Gao B, Novik V, Galan JE (2012) Quantitative proteomics of intracellular Campylobacter jejuni reveals metabolic reprogramming. PLoS Pathog8: e1002562
CrossRef
Google scholar
|
[38] |
Machner MP, Isberg RR (2007) A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science318: 974-977
CrossRef
Google scholar
|
[39] |
Mukherjee S, Liu X, Arasaki K, McDonough J, Galan JE, Roy CR (2011) Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature477: 103-106
CrossRef
Google scholar
|
[40] |
Muller MP, Peters H, Bluemer J, Blankenfeldt W, Goody RS, Itzen A (2010) The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science329: 946-949
CrossRef
Google scholar
|
[41] |
Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, Roy CR (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol8: 971-977
CrossRef
Google scholar
|
[42] |
Neunuebel MR, Chen Y, Gasper AH, Backlund PS Jr, Yergey A, Machner MP (2011) De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science333: 453-456
CrossRef
Google scholar
|
[43] |
Ohl ME, Miller SI (2001) Salmonella: a model for bacterial pathogenesis. Annu Rev Med52: 259-274
CrossRef
Google scholar
|
[44] |
Paape D, Lippuner C, Schmid M, Ackermann R, Barrios-Llerena ME, Zimny-Arndt U, Brinkmann V, Arndt B, Pleissner KP, Jungblut PR
CrossRef
Google scholar
|
[45] |
Pieper R, Zhang Q, Parmar PP, Huang ST, Clark DJ, Alami H, Donohue-Rolfe A, Fleischmann RD, Peterson SN, Tzipori S (2009) The Shigella dysenteriae serotype 1 proteome, profiled in the host intestinal environment, reveals major metabolic modifications and increased expression of invasive proteins. Proteomics9: 5029-5045
CrossRef
Google scholar
|
[46] |
Pieper R, Fisher CR, Suh MJ, Huang ST, Parmar P, Payne SM (2013) Analysis of the proteome of intracellular Shigella flexneri reveals pathways important for intracellular growth. Infect Immun81: 4635-4648
CrossRef
Google scholar
|
[47] |
Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics73: 2064-2077
CrossRef
Google scholar
|
[48] |
Rogers LD, Brown NF, Fang Y, Pelech S, Foster LJ (2011) Phosphoproteomic Analysis of Salmonella-infected cells identifies key kinase regulators and SopB-dependent host phosphorylation events. Sci Signal4: 1-13
CrossRef
Google scholar
|
[49] |
Salomon D, Orth K (2013) What pathogens have taught us about posttranslational modifications. Cell Host Microbe14: 269-279
CrossRef
Google scholar
|
[50] |
Schmidt F, Volker U (2011) Proteome analysis of host-pathogen interactions: investigation of pathogen responses to the host cell environment. Proteomics11: 3203-3211
CrossRef
Google scholar
|
[51] |
Schmutz C, Ahrne E, Kasper CA, Tschon T, Sorg I, Dreier RF, Schmidt A, Arrieumerlou C (2013) Systems-level overview of host protein phosphorylation during Shigella flexneri infection revealed by phosphoproteomics. Mol Cell Proteomics12: 2952-2968
CrossRef
Google scholar
|
[52] |
Schoebel S, Oesterlin LK, Blankenfeldt W, Goody RS, Itzen A (2009) RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol Cell36: 1060-1072
CrossRef
Google scholar
|
[53] |
Sengupta N, Alam SI (2011) In vivo studies of Clostridium perfringens in mouse gas gangrene model. Curr Microbiol62: 999-1008
CrossRef
Google scholar
|
[54] |
Sherwood RK, Roy CR (2013) A Rab-centric perspective of bacterial pathogen-occupied vacuoles. Cell Host Microbe14: 256-268
CrossRef
Google scholar
|
[55] |
Shi L, Adkins JN, Coleman JR, Schepmoes AA, Dohnkova A, Mottaz HM, Norbeck AD, Purvine SO, Manes NP, Smallwood HS
CrossRef
Google scholar
|
[56] |
Shi L, Ansong C, Smallwood H, Rommereim L, McDermott JE, Brewer HM, Norbeck AD, Taylor RC, Gustin JK, Heffron F
CrossRef
Google scholar
|
[57] |
Shi L, Chowdhury SM, Smallwood HS, Yoon H, Mottaz-Brewer HM, Norbeck AD, McDermott JE, Clauss TRW, Heffron F, Smith RD
CrossRef
Google scholar
|
[58] |
Sonck KAJ, Kint G, Schoofs G, Vander Wauven C, Vanderleyden J, De Keersmaecker SCJ (2009) The proteome of Salmonella Typhimurium grown under in vivo-mimicking conditions. Proteomics9: 565-579
CrossRef
Google scholar
|
[59] |
Stancik LM, Stancik DM, Schmidt B, Barnhart DM, Yoncheva YN, Slonczewski JL (2002) pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J Bacteriol184: 4246-4258
CrossRef
Google scholar
|
[60] |
Suh MJ, Kuntumalla S, Yu Y, Pieper R (2014) Proteomes of pathogenic Escherichia coli/Shigella group surveyed in their host environments. Expert Rev Proteomics11: 593-609
CrossRef
Google scholar
|
[61] |
Tan Y, Luo Z (2011) Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature475: 506-509
CrossRef
Google scholar
|
[62] |
Tan Y, Arnold RJ, Luo Z (2011) Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci USA108: 21212-21217
CrossRef
Google scholar
|
[63] |
Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics9: 1451-1468
CrossRef
Google scholar
|
[64] |
Twine SM, Mykytczuk NCS, Petit MD, Shen H, Sjostedt A, Conlan JW, Kelly JF (2006) In vivo proteomic analysis of the intracellular bacterial pathogen, Francisella tularensis, isolated from mouse spleen. Biochem Biophys Res Commun345: 1621-1633
CrossRef
Google scholar
|
[65] |
Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN, Aeversold R, Hilbi H (2009) Proteome analysis of Legiobella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic10: 76-87
CrossRef
Google scholar
|
[66] |
Walduck A, Rudel T, Meyer TF (2004) Proteomic and gene profiling approaches to study host responses to bacterial infection. Curr Opin Microbiol7: 33-38
CrossRef
Google scholar
|
[67] |
Weber A, Kogl SA, Jung K (2006) Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J Bacteriol188: 7165-7175
CrossRef
Google scholar
|
[68] |
Weekes MP, Tomasec P, Huttlin EL, Fielding CA, Nusinow D, Stanton RJ, Wang EC, Aicheler R, Murrell I, Wilkinson GW
CrossRef
Google scholar
|
[69] |
Worby CA, Mattoo S, Kruger RP, Corbeil LB, Koller A, Mendez JC, Zekarias B, Lazar C, Dixon JE (2009) The fic domain: regulation of cell signaling by adenylylation. Mol Cell34: 93-103
CrossRef
Google scholar
|
[70] |
Yarbrough ML, Li Y, Kinch LN, Grishin NV, Ball HL, Orth K (2009) AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science323: 269-272
CrossRef
Google scholar
|
[71] |
Yohannes E, Barnhart DM, Slonczewski JL (2004) pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J Bacteriol186: 192-199
CrossRef
Google scholar
|
[72] |
Yu J, Guo L (2011) Quantitative proteomic analysis of Salmonella enterica serovar Typhimurium under PhoP/PhoQ activation conditions. J Proteome Res10: 2992-3002
CrossRef
Google scholar
|
[73] |
Zhang CG, Chromy BA, McCutchen-Maloney SL (2005) Hostpathogen interactions: a proteomic view. Expert Rev Proteomics2: 187-202
CrossRef
Google scholar
|
[74] |
Zhang L, Ding X, Cui J, Xu H, Chen J, Gong Y, Hu L, Zhou Y, Ge J, Lu Q
CrossRef
Google scholar
|
[75] |
Zhu L, Zhao G, Stein R, Zheng X, Hu W, Shang N, Bu X, Liu X, Wang J, Feng E
CrossRef
Google scholar
|
/
〈 | 〉 |