Three-dimensional regulation of transcription
Received date: 25 Dec 2014
Accepted date: 09 Jan 2015
Published date: 13 Apr 2015
Copyright
Cells can adapt to environment and development by reconstructing their transcriptional networks to regulate diverse cellular processes without altering the underlying DNA sequences. These alterations, namely epigenetic changes, occur during cell division, differentiation and cell death. Numerous evidences demonstrate that epigenetic changes are governed by various types of determinants, including DNA methylation patterns, histone posttranslational modification signatures, histone variants, chromatin remodeling, and recently discovered chromosome conformation characteristics and noncoding RNAs (ncRNAs). Here, we highlight recent efforts on how the two latter epigenetic factors participate in the sophisticated transcriptional process and describe emerging techniques which permit us to uncover and gain insights into the fascinating genomic regulation.
Jun Cao , Zhengyu Luo , Qingyu Cheng , Qianlan Xu , Yan Zhang , Fei Wang , Yan Wu , Xiaoyuan Song . Three-dimensional regulation of transcription[J]. Protein & Cell, 2015 , 6(4) : 241 -253 . DOI: 10.1007/s13238-015-0135-7
1 |
Abdelmohsen K, Panda A, Kang MJ, Xu J, Selimyan R, Yoon JH, Martindale JL, De S, Wood WH 3rd, Becker KG
|
2 |
Bell AC, West AG, Felsenfeld G (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science291: 447-450
|
3 |
Berger SL (2007) The complex language of chromatin regulation during transcription. Nature447: 407-412
|
4 |
Brannan CI, Dees EC, Ingram RS, Tilghman SM (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol10: 28-36
|
5 |
Bushey AM, Dorman ER, Corces VG (2008) Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol Cell32: 1-9
|
6 |
Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev25: 1915-1927
|
7 |
Cairns BR (2009) The logic of chromatin architecture and remodelling at promoters. Nature461: 193-198
|
8 |
Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell73: 1019-1030
|
9 |
Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C
|
10 |
Cavalli G, Misteli T (2013) Functional implications of genome topology. Nat Struct Mol Biol20: 290-299
|
11 |
Chitwood DH, Timmermans MC (2010) Small RNAs are on the move. Nature467: 415-419
|
12 |
de Laat W, Dekker J (2012) 3C-based technologies to study the shape of the genome. Methods58: 189-191
|
13 |
de Laat W, Duboule D (2013) Topology of mammalian developmental enhancers and their regulatory landscapes. Nature502: 499-506
|
14 |
De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei CL, Natoli G (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol8: e1000384
|
15 |
Dean A (2011) In the loop: long range chromatin interactions and gene regulation. Brief Funct Genomics10: 3-10
|
16 |
Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science295: 1306-1311
|
17 |
Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG
|
18 |
Dey BK, Mueller AC, Dutta A (2014) Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription5: e944014
|
19 |
Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C
|
20 |
Dynlacht BD (1997) Regulation of transcription by proteins that control the cell cycle. Nature389: 149-152
|
21 |
Edmondson DG, Roth SY (1996) Chromatin and transcription. FASEB J10: 1173-1182
|
22 |
Fanucchi S, Shibayama Y, Burd S, Weinberg MS, Mhlanga MM (2013) Chromosomal contact permits transcription between coregulated genes. Cell155: 606-620
|
23 |
Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet15: 7-21
|
24 |
Fitzgerald KA, Caffrey DR (2014) Long noncoding RNAs in innate and adaptive immunity. Curr Opin Immunol26: 140-146
|
25 |
Galande S, Purbey PK, Notani D, Kumar PP (2007) The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. Curr Opin Genet Dev17: 408-414
|
26 |
Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol Cell49: 773-782
|
27 |
Gomez-Diaz E, Corces VG (2014) Architectural proteins: regulators of 3D genome organization in cell fate. Trends Cell Biol24: 703-711
|
28 |
Gondor A, Ohlsson R (2009) Chromosome crosstalk in three dimensions. Nature461: 212-217
|
29 |
Guil S, Soler M, Portela A, Carrere J, Fonalleras E, Gomez A, Villanueva A, Esteller M (2012) Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nat Struct Mol Biol19: 664-670
|
30 |
Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai M-C, Hung T, Argani P, Rinn JL (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature464: 1071-1076
|
31 |
Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature482: 339-346
|
32 |
Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP
|
33 |
Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J, Sun L, McClanahan P, Hendrickson DG, Sauvageau M, Kelley DR
|
34 |
Hager GL, McNally JG, Misteli T (2009) Transcription dynamics. Mol Cell35: 741-753
|
35 |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature495: 384-388
|
36 |
Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, Ren B, Fu XD, Topol EJ, Rosenfeld MG
|
37 |
Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science331: 76-79
|
38 |
Herold M, Bartkuhn M, Renkawitz R (2012) CTCF: insights into insulator function during development. Development139: 1045-1057
|
39 |
Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell142: 409-419
|
40 |
Ilik IA, Quinn JJ, Georgiev P, Tavares-Cadete F, Maticzka D, Toscano S, Wan Y, Spitale RC, Luscombe N, Backofen R
|
41 |
Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS
|
42 |
Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H
|
43 |
Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap C, Suzuki M, Kawai J (2005) Antisense transcription in the mammalian transcriptome. Science309: 1564-1566
|
44 |
Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell116: 259-272
|
45 |
Kimura H (2013) Histone modifications for human epigenome analysis. J Hum Genet58: 439-445
|
46 |
Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal3: ra8
|
47 |
Kornienko AE, Guenzl PM, Barlow DP, Pauler FM (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biol11: 59
|
48 |
Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J
|
49 |
Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R (2013) Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature494: 497-501
|
50 |
Lam MTY, Li W, Rosenfeld MG, Glass CK (2014) Enhancer RNAs and regulated transcriptional programs. Trends Biochem Sci39: 170-182
|
51 |
Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science338: 1435-1439
|
52 |
Lee JT, Bartolomei MS (2013) X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell152: 1308-1323
|
53 |
Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature424: 147-151
|
54 |
Li J, Xuan Z, Liu C (2013a) Long non-coding RNAs and complex human diseases. Int J Mol Sci14: 18790-18808
|
55 |
Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, Merkurjev D, Zhang J, Ohgi K, Song X
|
56 |
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO
|
57 |
Luft FC (2014) Aberrant transcriptional regulation could explain phenotypic variability in autosomal recessive polycystic kidney disease. J Mol Med (Berl)92: 1011-1014
|
58 |
Maenner S, Muller M, Frohlich J, Langer D, Becker PB (2013) ATPdependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins. Mol Cell51: 174-184
|
59 |
Magistri M, Faghihi MA, St Laurent G III, Wahlestedt C (2012) Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends Genet28: 389-396
|
60 |
Marques AC, Hughes J, Graham B, Kowalczyk MS, Higgs DR, Ponting CP (2013) Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol14: R131
|
61 |
Mattick JS (2011) The central role of RNA in human development and cognition. FEBS Lett585: 1600-1616
|
62 |
Metivier R, Reid G, Gannon F (2006) Transcription in four dimensions: nuclear receptor-directed initiation of gene expression. EMBORep 7: 161-167
|
63 |
Millau JF, Gaudreau L (2011) CTCF, cohesin, and histone variants: connecting the genome. Biochem Cell Biol89: 505-513
|
64 |
Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell128: 787-800
|
65 |
Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, Fraser P (2008) The air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science322: 1717-1720
|
66 |
Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P (2013) Single-cell Hi-C reveals cellto-cell variability in chromosome structure. Nature502: 59-64
|
67 |
Nakahashi H, Kwon KR, Resch W, Vian L, Dose M, Stavreva D, Hakim O, Pruett N, Nelson S, Yamane A
|
68 |
Newman JJ, Young RA (2010) Connecting transcriptional control to chromosome structure and human disease. Cold Spring Harb Symp Quant Biol75: 227-235
|
69 |
News S (2010) Insights of the decade. Stepping away from the trees for a look at the forest. Introduction. Science330: 1612-1613
|
70 |
Nickerson JA, Krochmalnic G, Wan KM, Penman S (1989) Chromatin architecture and nuclear RNA. Proc Natl Acad Sci USA86: 177-181
|
71 |
Orom UA, Derrien T, Guigo R, Shiekhattar R (2010) Long noncoding RNAs as enhancers of gene expression. Cold Spring Harb Symp Quant Biol75: 325-331
|
72 |
Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T
|
73 |
Pennisi E (2010) Shining a light on the genome’s ‘dark matter’. Science330: 1614
|
74 |
Phillips JE, Corces VG (2009) CTCF: master weaver of the genome. Cell137: 1194-1211
|
75 |
Ptashne M, Gann A (1997) Transcriptional activation by recruitment. Nature386: 569-577
|
76 |
Quinodoz S, Guttman M (2014) Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol24: 651-663
|
77 |
Recillas-Targa F, De La Rosa-Velazquez IA, Soto-Reyes E, Benitez- Bribiesca L (2006) Epigenetic boundaries of tumour suppressor gene promoters: the CTCF connection and its role in carcinogenesis. J Cell Mol Med10: 554-568
|
78 |
Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature447: 425-432
|
79 |
Riethoven JJ (2010) Regulatory regions in DNA: promoters, enhancers, silencers, and insulators. Methods Mol Biol674: 33-42
|
80 |
Rinn J, Guttman M (2014) RNA function. RNA and dynamic nuclear organization. Science345: 1240-1241
|
81 |
Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, Kurukuti S, Mitchell JA, Umlauf D, Dimitrova DS
|
82 |
Schonrock N, Harvey RP, Mattick JS (2012) Long noncoding RNAs in cardiac development and pathophysiology. Circ Res111: 1349-1362
|
83 |
Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV
|
84 |
Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M, Bowman SK, Kesner BA, Maier VK, Kingston RE, Lee JT (2013) High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature504: 465-469
|
85 |
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet38: 1348-1354
|
86 |
Splinter E, Heath H, Kooren J, Palstra RJ, Klous P, Grosveld F, Galjart N, de Laat W (2006) CTCF mediates long-range chromatin looping and local histone modification in the betaglobin locus. Genes Dev20: 2349-2354
|
87 |
Stuwe E, Toth KF, Aravin AA (2014) Small but sturdy: small RNAs in cellular memory and epigenetics. Genes Dev28: 423-431
|
88 |
Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E, Sauvageau M, Tazon-Vega B, Kelley DR, Hendrickson DG
|
89 |
Takagi Y, Kornberg RD (2006) Mediator as a general transcription factor. J Biol Chem281: 80-89
|
90 |
Tark-Dame M, Jerabek H, Manders EM, Heermann DW, van Driel R (2014) Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling. PLoS Comput Biol10: e1003877
|
91 |
Thijssen PE, Tobi EW, Balog J, Schouten SG, Kremer D, El Bouazzaoui F, Henneman P, Putter H, Eline Slagboom P, Heijmans BT
|
92 |
Tian D, Sun S, Lee JT (2010) The long noncoding RNA, Jpx, is a molecular switch forXchromosome inactivation. Cell143: 390-403
|
93 |
Toscano-Garibay JD, Aquino-Jarquin G (2014) Transcriptional regulation mechanism mediated by miRNA-DNA*DNA triplex structure stabilized by Argonaute. Biochim Biophys Acta1839: 1079-1083
|
94 |
Tsompana M, Buck MJ (2014) Chromatin accessibility: a window into the genome. Epigenet Chromatin7: 33
|
95 |
Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell154: 26-46
|
96 |
Visel A, Rubin EM, Pennacchio LA (2009) Genomic views of distantacting enhancers. Nature461: 199-205
|
97 |
Wan G, Hu X, Liu Y, Han C, Sood AK, Calin GA, Zhang X, Lu X (2013) A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J32: 2833-2847
|
98 |
Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell43: 904-914
|
99 |
Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK, Kurokawa R (2008) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature454: 126-130
|
100 |
Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA (2011a) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature472: 120-124
|
101 |
Wang X, Song X, Glass CK, Rosenfeld MG (2011b) The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol3: a003756
|
102 |
Wang XQ, Crutchley JL, Dostie J (2011c) Shaping the genome with non-coding RNAs. Curr Genomics12: 307-321
|
103 |
Warnefors M, Eyre-Walker A (2011) The accumulation of gene regulation through time. Genome Biol Evol3: 667-673
|
104 |
Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T
|
105 |
Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev23: 1494-1504
|
106 |
Woodcock CL (2006) Chromatin architecture. Curr Opin Struct Biol16: 213-220
|
107 |
Wutz A, Rasmussen TP, Jaenisch R (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet30: 167-174
|
108 |
Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z, Zhang S, Wang HB, Ge J, Lu X
|
109 |
Yang G, Lu X, Yuan L (2014) LncRNA: a link between RNA and cancer. Biochim Biophys Acta1839: 1097-1109
|
110 |
Zappulla DC, Cech TR (2006) RNA as a flexible scaffold for proteins: yeast telomerase and beyond. Cold Spring Harb Symp Quant Biol71: 217-224
|
111 |
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell51: 792-806
|
112 |
Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu KS, Singh U
|
/
〈 |
|
〉 |