REVIEW

Three-dimensional regulation of transcription

  • Jun Cao ,
  • Zhengyu Luo ,
  • Qingyu Cheng ,
  • Qianlan Xu ,
  • Yan Zhang ,
  • Fei Wang ,
  • Yan Wu ,
  • Xiaoyuan Song
Expand
  • CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China

Received date: 25 Dec 2014

Accepted date: 09 Jan 2015

Published date: 13 Apr 2015

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Cells can adapt to environment and development by reconstructing their transcriptional networks to regulate diverse cellular processes without altering the underlying DNA sequences. These alterations, namely epigenetic changes, occur during cell division, differentiation and cell death. Numerous evidences demonstrate that epigenetic changes are governed by various types of determinants, including DNA methylation patterns, histone posttranslational modification signatures, histone variants, chromatin remodeling, and recently discovered chromosome conformation characteristics and noncoding RNAs (ncRNAs). Here, we highlight recent efforts on how the two latter epigenetic factors participate in the sophisticated transcriptional process and describe emerging techniques which permit us to uncover and gain insights into the fascinating genomic regulation.

Cite this article

Jun Cao , Zhengyu Luo , Qingyu Cheng , Qianlan Xu , Yan Zhang , Fei Wang , Yan Wu , Xiaoyuan Song . Three-dimensional regulation of transcription[J]. Protein & Cell, 2015 , 6(4) : 241 -253 . DOI: 10.1007/s13238-015-0135-7

1
Abdelmohsen K, Panda A, Kang MJ, Xu J, Selimyan R, Yoon JH, Martindale JL, De S, Wood WH 3rd, Becker KG (2013) Senescence-associated lncRNAs: senescence-associated long noncoding RNAs. Aging Cell12: 890-900

DOI

2
Bell AC, West AG, Felsenfeld G (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science291: 447-450

DOI

3
Berger SL (2007) The complex language of chromatin regulation during transcription. Nature447: 407-412

DOI

4
Brannan CI, Dees EC, Ingram RS, Tilghman SM (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol10: 28-36

5
Bushey AM, Dorman ER, Corces VG (2008) Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol Cell32: 1-9

DOI

6
Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev25: 1915-1927

DOI

7
Cairns BR (2009) The logic of chromatin architecture and remodelling at promoters. Nature461: 193-198

DOI

8
Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell73: 1019-1030

DOI

9
Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C (2012) Long noncoding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature491: 454-457

DOI

10
Cavalli G, Misteli T (2013) Functional implications of genome topology. Nat Struct Mol Biol20: 290-299

DOI

11
Chitwood DH, Timmermans MC (2010) Small RNAs are on the move. Nature467: 415-419

DOI

12
de Laat W, Dekker J (2012) 3C-based technologies to study the shape of the genome. Methods58: 189-191

DOI

13
de Laat W, Duboule D (2013) Topology of mammalian developmental enhancers and their regulatory landscapes. Nature502: 499-506

DOI

14
De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei CL, Natoli G (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol8: e1000384

DOI

15
Dean A (2011) In the loop: long range chromatin interactions and gene regulation. Brief Funct Genomics10: 3-10

DOI

16
Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science295: 1306-1311

DOI

17
Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res22: 1775-1789

DOI

18
Dey BK, Mueller AC, Dutta A (2014) Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription5: e944014

DOI

19
Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C (2006) Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res16: 1299-1309

DOI

20
Dynlacht BD (1997) Regulation of transcription by proteins that control the cell cycle. Nature389: 149-152

DOI

21
Edmondson DG, Roth SY (1996) Chromatin and transcription. FASEB J10: 1173-1182

22
Fanucchi S, Shibayama Y, Burd S, Weinberg MS, Mhlanga MM (2013) Chromosomal contact permits transcription between coregulated genes. Cell155: 606-620

DOI

23
Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet15: 7-21

DOI

24
Fitzgerald KA, Caffrey DR (2014) Long noncoding RNAs in innate and adaptive immunity. Curr Opin Immunol26: 140-146

DOI

25
Galande S, Purbey PK, Notani D, Kumar PP (2007) The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. Curr Opin Genet Dev17: 408-414

DOI

26
Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol Cell49: 773-782

DOI

27
Gomez-Diaz E, Corces VG (2014) Architectural proteins: regulators of 3D genome organization in cell fate. Trends Cell Biol24: 703-711

DOI

28
Gondor A, Ohlsson R (2009) Chromosome crosstalk in three dimensions. Nature461: 212-217

DOI

29
Guil S, Soler M, Portela A, Carrere J, Fonalleras E, Gomez A, Villanueva A, Esteller M (2012) Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nat Struct Mol Biol19: 664-670

DOI

30
Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai M-C, Hung T, Argani P, Rinn JL (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature464: 1071-1076

DOI

31
Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature482: 339-346

DOI

32
Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP (2009) Chromatin signature reveals over a thousand highly conserved large noncoding RNAs in mammals. Nature458: 223-227

DOI

33
Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J, Sun L, McClanahan P, Hendrickson DG, Sauvageau M, Kelley DR (2014) Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol21: 198-206

DOI

34
Hager GL, McNally JG, Misteli T (2009) Transcription dynamics. Mol Cell35: 741-753

DOI

35
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature495: 384-388

DOI

36
Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, Ren B, Fu XD, Topol EJ, Rosenfeld MG (2011) 9p21 DNA variants associated with coronary artery disease impair interferon- gamma signalling response. Nature470: 264-268

DOI

37
Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science331: 76-79

DOI

38
Herold M, Bartkuhn M, Renkawitz R (2012) CTCF: insights into insulator function during development. Development139: 1045-1057

DOI

39
Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell142: 409-419

DOI

40
Ilik IA, Quinn JJ, Georgiev P, Tavares-Cadete F, Maticzka D, Toscano S, Wan Y, Spitale RC, Luscombe N, Backofen R (2013) Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol Cell51: 156-173

DOI

41
Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature467: 430-435

DOI

42
Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H (2013) The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell52: 101-112

DOI

43
Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap C, Suzuki M, Kawai J (2005) Antisense transcription in the mammalian transcriptome. Science309: 1564-1566

DOI

44
Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell116: 259-272

DOI

45
Kimura H (2013) Histone modifications for human epigenome analysis. J Hum Genet58: 439-445

DOI

46
Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal3: ra8

DOI

47
Kornienko AE, Guenzl PM, Barlow DP, Pauler FM (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biol11: 59

DOI

48
Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J (2013) Control of somatic tissue differentiation by the long non-coding RNATINCR. Nature493: 231-235

DOI

49
Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R (2013) Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature494: 497-501

DOI

50
Lam MTY, Li W, Rosenfeld MG, Glass CK (2014) Enhancer RNAs and regulated transcriptional programs. Trends Biochem Sci39: 170-182

DOI

51
Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science338: 1435-1439

DOI

52
Lee JT, Bartolomei MS (2013) X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell152: 1308-1323

DOI

53
Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature424: 147-151

DOI

54
Li J, Xuan Z, Liu C (2013a) Long non-coding RNAs and complex human diseases. Int J Mol Sci14: 18790-18808

DOI

55
Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, Merkurjev D, Zhang J, Ohgi K, Song X (2013b) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature498: 516-520

DOI

56
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science326: 289-293

DOI

57
Luft FC (2014) Aberrant transcriptional regulation could explain phenotypic variability in autosomal recessive polycystic kidney disease. J Mol Med (Berl)92: 1011-1014

DOI

58
Maenner S, Muller M, Frohlich J, Langer D, Becker PB (2013) ATPdependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins. Mol Cell51: 174-184

DOI

59
Magistri M, Faghihi MA, St Laurent G III, Wahlestedt C (2012) Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends Genet28: 389-396

DOI

60
Marques AC, Hughes J, Graham B, Kowalczyk MS, Higgs DR, Ponting CP (2013) Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol14: R131

DOI

61
Mattick JS (2011) The central role of RNA in human development and cognition. FEBS Lett585: 1600-1616

DOI

62
Metivier R, Reid G, Gannon F (2006) Transcription in four dimensions: nuclear receptor-directed initiation of gene expression. EMBORep 7: 161-167

DOI

63
Millau JF, Gaudreau L (2011) CTCF, cohesin, and histone variants: connecting the genome. Biochem Cell Biol89: 505-513

DOI

64
Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell128: 787-800

DOI

65
Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, Fraser P (2008) The air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science322: 1717-1720

DOI

66
Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P (2013) Single-cell Hi-C reveals cellto-cell variability in chromosome structure. Nature502: 59-64

DOI

67
Nakahashi H, Kwon KR, Resch W, Vian L, Dose M, Stavreva D, Hakim O, Pruett N, Nelson S, Yamane A (2013) A genomewide map of CTCF multivalency redefines the CTCF code. CellRep 3: 1678-1689

DOI

68
Newman JJ, Young RA (2010) Connecting transcriptional control to chromosome structure and human disease. Cold Spring Harb Symp Quant Biol75: 227-235

DOI

69
News S (2010) Insights of the decade. Stepping away from the trees for a look at the forest. Introduction. Science330: 1612-1613

DOI

70
Nickerson JA, Krochmalnic G, Wan KM, Penman S (1989) Chromatin architecture and nuclear RNA. Proc Natl Acad Sci USA86: 177-181

DOI

71
Orom UA, Derrien T, Guigo R, Shiekhattar R (2010) Long noncoding RNAs as enhancers of gene expression. Cold Spring Harb Symp Quant Biol75: 325-331

DOI

72
Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell132: 422-433

DOI

73
Pennisi E (2010) Shining a light on the genome’s ‘dark matter’. Science330: 1614

DOI

74
Phillips JE, Corces VG (2009) CTCF: master weaver of the genome. Cell137: 1194-1211

DOI

75
Ptashne M, Gann A (1997) Transcriptional activation by recruitment. Nature386: 569-577

DOI

76
Quinodoz S, Guttman M (2014) Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol24: 651-663

DOI

77
Recillas-Targa F, De La Rosa-Velazquez IA, Soto-Reyes E, Benitez- Bribiesca L (2006) Epigenetic boundaries of tumour suppressor gene promoters: the CTCF connection and its role in carcinogenesis. J Cell Mol Med10: 554-568

DOI

78
Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature447: 425-432

DOI

79
Riethoven JJ (2010) Regulatory regions in DNA: promoters, enhancers, silencers, and insulators. Methods Mol Biol674: 33-42

DOI

80
Rinn J, Guttman M (2014) RNA function. RNA and dynamic nuclear organization. Science345: 1240-1241

DOI

81
Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, Kurukuti S, Mitchell JA, Umlauf D, Dimitrova DS (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet42: 53-61

DOI

82
Schonrock N, Harvey RP, Mattick JS (2012) Long noncoding RNAs in cardiac development and pathophysiology. Circ Res111: 1349-1362

DOI

83
Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV (2012) A map of the cisregulatory sequences in the mouse genome. Nature488: 116-120

DOI

84
Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M, Bowman SK, Kesner BA, Maier VK, Kingston RE, Lee JT (2013) High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature504: 465-469

DOI

85
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet38: 1348-1354

DOI

86
Splinter E, Heath H, Kooren J, Palstra RJ, Klous P, Grosveld F, Galjart N, de Laat W (2006) CTCF mediates long-range chromatin looping and local histone modification in the betaglobin locus. Genes Dev20: 2349-2354

DOI

87
Stuwe E, Toth KF, Aravin AA (2014) Small but sturdy: small RNAs in cellular memory and epigenetics. Genes Dev28: 423-431

DOI

88
Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E, Sauvageau M, Tazon-Vega B, Kelley DR, Hendrickson DG (2013) Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci USA110: 3387-3392

DOI

89
Takagi Y, Kornberg RD (2006) Mediator as a general transcription factor. J Biol Chem281: 80-89

DOI

90
Tark-Dame M, Jerabek H, Manders EM, Heermann DW, van Driel R (2014) Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling. PLoS Comput Biol10: e1003877

DOI

91
Thijssen PE, Tobi EW, Balog J, Schouten SG, Kremer D, El Bouazzaoui F, Henneman P, Putter H, Eline Slagboom P, Heijmans BT (2013) Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes. Epigenetics8: 512-521

DOI

92
Tian D, Sun S, Lee JT (2010) The long noncoding RNA, Jpx, is a molecular switch forXchromosome inactivation. Cell143: 390-403

DOI

93
Toscano-Garibay JD, Aquino-Jarquin G (2014) Transcriptional regulation mechanism mediated by miRNA-DNA*DNA triplex structure stabilized by Argonaute. Biochim Biophys Acta1839: 1079-1083

DOI

94
Tsompana M, Buck MJ (2014) Chromatin accessibility: a window into the genome. Epigenet Chromatin7: 33

DOI

95
Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell154: 26-46

DOI

96
Visel A, Rubin EM, Pennacchio LA (2009) Genomic views of distantacting enhancers. Nature461: 199-205

DOI

97
Wan G, Hu X, Liu Y, Han C, Sood AK, Calin GA, Zhang X, Lu X (2013) A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J32: 2833-2847

DOI

98
Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell43: 904-914

DOI

99
Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK, Kurokawa R (2008) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature454: 126-130

DOI

100
Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA (2011a) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature472: 120-124

DOI

101
Wang X, Song X, Glass CK, Rosenfeld MG (2011b) The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol3: a003756

DOI

102
Wang XQ, Crutchley JL, Dostie J (2011c) Shaping the genome with non-coding RNAs. Curr Genomics12: 307-321

DOI

103
Warnefors M, Eyre-Walker A (2011) The accumulation of gene regulation through time. Genome Biol Evol3: 667-673

DOI

104
Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature451: 796-801

DOI

105
Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev23: 1494-1504

DOI

106
Woodcock CL (2006) Chromatin architecture. Curr Opin Struct Biol16: 213-220

DOI

107
Wutz A, Rasmussen TP, Jaenisch R (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet30: 167-174

DOI

108
Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z, Zhang S, Wang HB, Ge J, Lu X (2014) Human colorectal cancerspecific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res24: 513-531

DOI

109
Yang G, Lu X, Yuan L (2014) LncRNA: a link between RNA and cancer. Biochim Biophys Acta1839: 1097-1109

DOI

110
Zappulla DC, Cech TR (2006) RNA as a flexible scaffold for proteins: yeast telomerase and beyond. Cold Spring Harb Symp Quant Biol71: 217-224

DOI

111
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell51: 792-806

DOI

112
Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu KS, Singh U (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet38: 1341-1347

DOI

Outlines

/