Three-dimensional regulation of transcription

Jun Cao, Zhengyu Luo, Qingyu Cheng, Qianlan Xu, Yan Zhang, Fei Wang, Yan Wu, Xiaoyuan Song

PDF(1955 KB)
PDF(1955 KB)
Protein Cell ›› 2015, Vol. 6 ›› Issue (4) : 241-253. DOI: 10.1007/s13238-015-0135-7
REVIEW
REVIEW

Three-dimensional regulation of transcription

Author information +
History +

Abstract

Cells can adapt to environment and development by reconstructing their transcriptional networks to regulate diverse cellular processes without altering the underlying DNA sequences. These alterations, namely epigenetic changes, occur during cell division, differentiation and cell death. Numerous evidences demonstrate that epigenetic changes are governed by various types of determinants, including DNA methylation patterns, histone posttranslational modification signatures, histone variants, chromatin remodeling, and recently discovered chromosome conformation characteristics and noncoding RNAs (ncRNAs). Here, we highlight recent efforts on how the two latter epigenetic factors participate in the sophisticated transcriptional process and describe emerging techniques which permit us to uncover and gain insights into the fascinating genomic regulation.

Keywords

transcriptional regulation / long non-coding RNAs / three-dimensional chromosome interactions / epigenetic changes

Cite this article

Download citation ▾
Jun Cao, Zhengyu Luo, Qingyu Cheng, Qianlan Xu, Yan Zhang, Fei Wang, Yan Wu, Xiaoyuan Song. Three-dimensional regulation of transcription. Protein Cell, 2015, 6(4): 241‒253 https://doi.org/10.1007/s13238-015-0135-7

References

[1]
Abdelmohsen K, Panda A, Kang MJ, Xu J, Selimyan R, Yoon JH, Martindale JL, De S, Wood WH 3rd, Becker KG (2013) Senescence-associated lncRNAs: senescence-associated long noncoding RNAs. Aging Cell12: 890-900
CrossRef Google scholar
[2]
Bell AC, West AG, Felsenfeld G (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science291: 447-450
CrossRef Google scholar
[3]
Berger SL (2007) The complex language of chromatin regulation during transcription. Nature447: 407-412
CrossRef Google scholar
[4]
Brannan CI, Dees EC, Ingram RS, Tilghman SM (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol10: 28-36
[5]
Bushey AM, Dorman ER, Corces VG (2008) Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol Cell32: 1-9
CrossRef Google scholar
[6]
Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev25: 1915-1927
CrossRef Google scholar
[7]
Cairns BR (2009) The logic of chromatin architecture and remodelling at promoters. Nature461: 193-198
CrossRef Google scholar
[8]
Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell73: 1019-1030
CrossRef Google scholar
[9]
Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C (2012) Long noncoding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature491: 454-457
CrossRef Google scholar
[10]
Cavalli G, Misteli T (2013) Functional implications of genome topology. Nat Struct Mol Biol20: 290-299
CrossRef Google scholar
[11]
Chitwood DH, Timmermans MC (2010) Small RNAs are on the move. Nature467: 415-419
CrossRef Google scholar
[12]
de Laat W, Dekker J (2012) 3C-based technologies to study the shape of the genome. Methods58: 189-191
CrossRef Google scholar
[13]
de Laat W, Duboule D (2013) Topology of mammalian developmental enhancers and their regulatory landscapes. Nature502: 499-506
CrossRef Google scholar
[14]
De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei CL, Natoli G (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol8: e1000384
CrossRef Google scholar
[15]
Dean A (2011) In the loop: long range chromatin interactions and gene regulation. Brief Funct Genomics10: 3-10
CrossRef Google scholar
[16]
Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science295: 1306-1311
CrossRef Google scholar
[17]
Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res22: 1775-1789
CrossRef Google scholar
[18]
Dey BK, Mueller AC, Dutta A (2014) Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription5: e944014
CrossRef Google scholar
[19]
Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C (2006) Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res16: 1299-1309
CrossRef Google scholar
[20]
Dynlacht BD (1997) Regulation of transcription by proteins that control the cell cycle. Nature389: 149-152
CrossRef Google scholar
[21]
Edmondson DG, Roth SY (1996) Chromatin and transcription. FASEB J10: 1173-1182
[22]
Fanucchi S, Shibayama Y, Burd S, Weinberg MS, Mhlanga MM (2013) Chromosomal contact permits transcription between coregulated genes. Cell155: 606-620
CrossRef Google scholar
[23]
Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet15: 7-21
CrossRef Google scholar
[24]
Fitzgerald KA, Caffrey DR (2014) Long noncoding RNAs in innate and adaptive immunity. Curr Opin Immunol26: 140-146
CrossRef Google scholar
[25]
Galande S, Purbey PK, Notani D, Kumar PP (2007) The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. Curr Opin Genet Dev17: 408-414
CrossRef Google scholar
[26]
Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol Cell49: 773-782
CrossRef Google scholar
[27]
Gomez-Diaz E, Corces VG (2014) Architectural proteins: regulators of 3D genome organization in cell fate. Trends Cell Biol24: 703-711
CrossRef Google scholar
[28]
Gondor A, Ohlsson R (2009) Chromosome crosstalk in three dimensions. Nature461: 212-217
CrossRef Google scholar
[29]
Guil S, Soler M, Portela A, Carrere J, Fonalleras E, Gomez A, Villanueva A, Esteller M (2012) Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nat Struct Mol Biol19: 664-670
CrossRef Google scholar
[30]
Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai M-C, Hung T, Argani P, Rinn JL (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature464: 1071-1076
CrossRef Google scholar
[31]
Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature482: 339-346
CrossRef Google scholar
[32]
Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP (2009) Chromatin signature reveals over a thousand highly conserved large noncoding RNAs in mammals. Nature458: 223-227
CrossRef Google scholar
[33]
Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J, Sun L, McClanahan P, Hendrickson DG, Sauvageau M, Kelley DR (2014) Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol21: 198-206
CrossRef Google scholar
[34]
Hager GL, McNally JG, Misteli T (2009) Transcription dynamics. Mol Cell35: 741-753
CrossRef Google scholar
[35]
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature495: 384-388
CrossRef Google scholar
[36]
Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, Ren B, Fu XD, Topol EJ, Rosenfeld MG (2011) 9p21 DNA variants associated with coronary artery disease impair interferon- gamma signalling response. Nature470: 264-268
CrossRef Google scholar
[37]
Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science331: 76-79
CrossRef Google scholar
[38]
Herold M, Bartkuhn M, Renkawitz R (2012) CTCF: insights into insulator function during development. Development139: 1045-1057
CrossRef Google scholar
[39]
Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell142: 409-419
CrossRef Google scholar
[40]
Ilik IA, Quinn JJ, Georgiev P, Tavares-Cadete F, Maticzka D, Toscano S, Wan Y, Spitale RC, Luscombe N, Backofen R (2013) Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol Cell51: 156-173
CrossRef Google scholar
[41]
Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature467: 430-435
CrossRef Google scholar
[42]
Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H (2013) The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell52: 101-112
CrossRef Google scholar
[43]
Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap C, Suzuki M, Kawai J (2005) Antisense transcription in the mammalian transcriptome. Science309: 1564-1566
CrossRef Google scholar
[44]
Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell116: 259-272
CrossRef Google scholar
[45]
Kimura H (2013) Histone modifications for human epigenome analysis. J Hum Genet58: 439-445
CrossRef Google scholar
[46]
Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal3: ra8
CrossRef Google scholar
[47]
Kornienko AE, Guenzl PM, Barlow DP, Pauler FM (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biol11: 59
CrossRef Google scholar
[48]
Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J (2013) Control of somatic tissue differentiation by the long non-coding RNATINCR. Nature493: 231-235
CrossRef Google scholar
[49]
Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R (2013) Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature494: 497-501
CrossRef Google scholar
[50]
Lam MTY, Li W, Rosenfeld MG, Glass CK (2014) Enhancer RNAs and regulated transcriptional programs. Trends Biochem Sci39: 170-182
CrossRef Google scholar
[51]
Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science338: 1435-1439
CrossRef Google scholar
[52]
Lee JT, Bartolomei MS (2013) X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell152: 1308-1323
CrossRef Google scholar
[53]
Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature424: 147-151
CrossRef Google scholar
[54]
Li J, Xuan Z, Liu C (2013a) Long non-coding RNAs and complex human diseases. Int J Mol Sci14: 18790-18808
CrossRef Google scholar
[55]
Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, Merkurjev D, Zhang J, Ohgi K, Song X (2013b) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature498: 516-520
CrossRef Google scholar
[56]
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science326: 289-293
CrossRef Google scholar
[57]
Luft FC (2014) Aberrant transcriptional regulation could explain phenotypic variability in autosomal recessive polycystic kidney disease. J Mol Med (Berl)92: 1011-1014
CrossRef Google scholar
[58]
Maenner S, Muller M, Frohlich J, Langer D, Becker PB (2013) ATPdependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins. Mol Cell51: 174-184
CrossRef Google scholar
[59]
Magistri M, Faghihi MA, St Laurent G III, Wahlestedt C (2012) Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends Genet28: 389-396
CrossRef Google scholar
[60]
Marques AC, Hughes J, Graham B, Kowalczyk MS, Higgs DR, Ponting CP (2013) Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol14: R131
CrossRef Google scholar
[61]
Mattick JS (2011) The central role of RNA in human development and cognition. FEBS Lett585: 1600-1616
CrossRef Google scholar
[62]
Metivier R, Reid G, Gannon F (2006) Transcription in four dimensions: nuclear receptor-directed initiation of gene expression. EMBORep 7: 161-167
CrossRef Google scholar
[63]
Millau JF, Gaudreau L (2011) CTCF, cohesin, and histone variants: connecting the genome. Biochem Cell Biol89: 505-513
CrossRef Google scholar
[64]
Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell128: 787-800
CrossRef Google scholar
[65]
Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, Fraser P (2008) The air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science322: 1717-1720
CrossRef Google scholar
[66]
Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P (2013) Single-cell Hi-C reveals cellto-cell variability in chromosome structure. Nature502: 59-64
CrossRef Google scholar
[67]
Nakahashi H, Kwon KR, Resch W, Vian L, Dose M, Stavreva D, Hakim O, Pruett N, Nelson S, Yamane A (2013) A genomewide map of CTCF multivalency redefines the CTCF code. CellRep 3: 1678-1689
CrossRef Google scholar
[68]
Newman JJ, Young RA (2010) Connecting transcriptional control to chromosome structure and human disease. Cold Spring Harb Symp Quant Biol75: 227-235
CrossRef Google scholar
[69]
News S (2010) Insights of the decade. Stepping away from the trees for a look at the forest. Introduction. Science330: 1612-1613
CrossRef Google scholar
[70]
Nickerson JA, Krochmalnic G, Wan KM, Penman S (1989) Chromatin architecture and nuclear RNA. Proc Natl Acad Sci USA86: 177-181
CrossRef Google scholar
[71]
Orom UA, Derrien T, Guigo R, Shiekhattar R (2010) Long noncoding RNAs as enhancers of gene expression. Cold Spring Harb Symp Quant Biol75: 325-331
CrossRef Google scholar
[72]
Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell132: 422-433
CrossRef Google scholar
[73]
Pennisi E (2010) Shining a light on the genome’s ‘dark matter’. Science330: 1614
CrossRef Google scholar
[74]
Phillips JE, Corces VG (2009) CTCF: master weaver of the genome. Cell137: 1194-1211
CrossRef Google scholar
[75]
Ptashne M, Gann A (1997) Transcriptional activation by recruitment. Nature386: 569-577
CrossRef Google scholar
[76]
Quinodoz S, Guttman M (2014) Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol24: 651-663
CrossRef Google scholar
[77]
Recillas-Targa F, De La Rosa-Velazquez IA, Soto-Reyes E, Benitez- Bribiesca L (2006) Epigenetic boundaries of tumour suppressor gene promoters: the CTCF connection and its role in carcinogenesis. J Cell Mol Med10: 554-568
CrossRef Google scholar
[78]
Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature447: 425-432
CrossRef Google scholar
[79]
Riethoven JJ (2010) Regulatory regions in DNA: promoters, enhancers, silencers, and insulators. Methods Mol Biol674: 33-42
CrossRef Google scholar
[80]
Rinn J, Guttman M (2014) RNA function. RNA and dynamic nuclear organization. Science345: 1240-1241
CrossRef Google scholar
[81]
Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, Kurukuti S, Mitchell JA, Umlauf D, Dimitrova DS (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet42: 53-61
CrossRef Google scholar
[82]
Schonrock N, Harvey RP, Mattick JS (2012) Long noncoding RNAs in cardiac development and pathophysiology. Circ Res111: 1349-1362
CrossRef Google scholar
[83]
Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV (2012) A map of the cisregulatory sequences in the mouse genome. Nature488: 116-120
CrossRef Google scholar
[84]
Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M, Bowman SK, Kesner BA, Maier VK, Kingston RE, Lee JT (2013) High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature504: 465-469
CrossRef Google scholar
[85]
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet38: 1348-1354
CrossRef Google scholar
[86]
Splinter E, Heath H, Kooren J, Palstra RJ, Klous P, Grosveld F, Galjart N, de Laat W (2006) CTCF mediates long-range chromatin looping and local histone modification in the betaglobin locus. Genes Dev20: 2349-2354
CrossRef Google scholar
[87]
Stuwe E, Toth KF, Aravin AA (2014) Small but sturdy: small RNAs in cellular memory and epigenetics. Genes Dev28: 423-431
CrossRef Google scholar
[88]
Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E, Sauvageau M, Tazon-Vega B, Kelley DR, Hendrickson DG (2013) Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci USA110: 3387-3392
CrossRef Google scholar
[89]
Takagi Y, Kornberg RD (2006) Mediator as a general transcription factor. J Biol Chem281: 80-89
CrossRef Google scholar
[90]
Tark-Dame M, Jerabek H, Manders EM, Heermann DW, van Driel R (2014) Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling. PLoS Comput Biol10: e1003877
CrossRef Google scholar
[91]
Thijssen PE, Tobi EW, Balog J, Schouten SG, Kremer D, El Bouazzaoui F, Henneman P, Putter H, Eline Slagboom P, Heijmans BT (2013) Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes. Epigenetics8: 512-521
CrossRef Google scholar
[92]
Tian D, Sun S, Lee JT (2010) The long noncoding RNA, Jpx, is a molecular switch forXchromosome inactivation. Cell143: 390-403
CrossRef Google scholar
[93]
Toscano-Garibay JD, Aquino-Jarquin G (2014) Transcriptional regulation mechanism mediated by miRNA-DNA*DNA triplex structure stabilized by Argonaute. Biochim Biophys Acta1839: 1079-1083
CrossRef Google scholar
[94]
Tsompana M, Buck MJ (2014) Chromatin accessibility: a window into the genome. Epigenet Chromatin7: 33
CrossRef Google scholar
[95]
Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell154: 26-46
CrossRef Google scholar
[96]
Visel A, Rubin EM, Pennacchio LA (2009) Genomic views of distantacting enhancers. Nature461: 199-205
CrossRef Google scholar
[97]
Wan G, Hu X, Liu Y, Han C, Sood AK, Calin GA, Zhang X, Lu X (2013) A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J32: 2833-2847
CrossRef Google scholar
[98]
Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell43: 904-914
CrossRef Google scholar
[99]
Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK, Kurokawa R (2008) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature454: 126-130
CrossRef Google scholar
[100]
Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA (2011a) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature472: 120-124
CrossRef Google scholar
[101]
Wang X, Song X, Glass CK, Rosenfeld MG (2011b) The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol3: a003756
CrossRef Google scholar
[102]
Wang XQ, Crutchley JL, Dostie J (2011c) Shaping the genome with non-coding RNAs. Curr Genomics12: 307-321
CrossRef Google scholar
[103]
Warnefors M, Eyre-Walker A (2011) The accumulation of gene regulation through time. Genome Biol Evol3: 667-673
CrossRef Google scholar
[104]
Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature451: 796-801
CrossRef Google scholar
[105]
Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev23: 1494-1504
CrossRef Google scholar
[106]
Woodcock CL (2006) Chromatin architecture. Curr Opin Struct Biol16: 213-220
CrossRef Google scholar
[107]
Wutz A, Rasmussen TP, Jaenisch R (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet30: 167-174
CrossRef Google scholar
[108]
Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z, Zhang S, Wang HB, Ge J, Lu X (2014) Human colorectal cancerspecific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res24: 513-531
CrossRef Google scholar
[109]
Yang G, Lu X, Yuan L (2014) LncRNA: a link between RNA and cancer. Biochim Biophys Acta1839: 1097-1109
CrossRef Google scholar
[110]
Zappulla DC, Cech TR (2006) RNA as a flexible scaffold for proteins: yeast telomerase and beyond. Cold Spring Harb Symp Quant Biol71: 217-224
CrossRef Google scholar
[111]
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell51: 792-806
CrossRef Google scholar
[112]
Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu KS, Singh U (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet38: 1341-1347
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AI Summary AI Mindmap
PDF(1955 KB)

Accesses

Citations

Detail

Sections
Recommended

/