REVIEW

Molecules and mechanisms controlling the active DNA demethylation of the mammalian zygotic genome

  • Jun-Yu Ma 1 ,
  • Teng Zhang 1,2 ,
  • Wei Shen 1 ,
  • Heide Schatten 3 ,
  • Qing Yuan Sun , 1,2
Expand
  • 1. College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
  • 2. State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
  • 3. Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA

Received date: 23 Jun 2014

Accepted date: 14 Jul 2014

Published date: 20 Nov 2014

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The active DNA demethylation in early embryos is essential for subsequent development. Although the zygotic genome is globally demethylated, the DNA methylation of imprinted regions, part of repeat sequences and some gamete-specific regions are maintained. Recent evidence has shown that multiple proteins and biological pathways participate in the regulation of active DNA demethylation, such as TET proteins, DNA repair pathways and DNA methyltransferases. Here we review the recent understanding regarding proteins associated with active DNA demethylation and the regulatory networks controlling the active DNA demethylation in early embryos.

Cite this article

Jun-Yu Ma , Teng Zhang , Wei Shen , Heide Schatten , Qing Yuan Sun . Molecules and mechanisms controlling the active DNA demethylation of the mammalian zygotic genome[J]. Protein & Cell, 2014 , 5(11) : 827 -836 . DOI: 10.1007/s13238-014-0095-3

1
Arioka Y, Watanabe A, Saito K, Yamada Y (2012) Activation-induced cytidine deaminase alters the subcellular localization of Tet family proteins. PloS One7: e45031

DOI

2
Benetti R, Gonzalo S, Jaco I, Munoz P, <?Pub Caret1?>Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen T, Klatt P (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat struct mol biol15: 998

DOI

3
Blaschke K, Ebata KT, Karimi MM, Zepeda-Martinez JA, Goyal P, Mahapatra S, Tam A, Laird DJ, Hirst M, Rao A (2013) Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature500: 222-226

DOI

4
Borgel J, Guibert S, Li Y, Chiba H, Schubeler D, Sasaki H, Forne T, Weber M (2010) Targets and dynamics of promoterDNAmethylation during early mouse development. Nature genetics42: 1093-1100

DOI

5
Bortvin A, Goodheart M, Liao M, Page DC (2004) Dppa3/Pgc7/stella is a maternal factor and is not required for germ cell specification in mice. BMC dev biol4: 2

DOI

6
Chen X, Zhang Y, Douglas L, Zhou P (2001) UV-damaged DNAbinding proteins are targets of CUL-4A-mediated ubiquitination and degradation. J biol chem276: 48175-48182

7
Chen Z, Liu Z, Huang J, Amano T, Li C, Cao S, Wu C, Liu B, Zhou L, Carter MG (2009) Birth of parthenote mice directly from parthenogenetic embryonic stem cells. Stem Cells27: 2136-2145

DOI

8
Chen CC, Wang KY, Shen CK (2012) The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J biol chem287: 33116-33121

DOI

9
Cirio MC, Ratnam S, Ding F, Reinhart B, Navara C, Chaillet JR (2008) Preimplantation expression of the somatic form of Dnmt1 suggests a role in the inheritance of genomic imprints. BMC dev biol8: 9

DOI

10
Cortazar D, Kunz C, Selfridge J, Lettieri T, Saito Y, MacDougall E, Wirz A, Schuermann D, Jacobs AL, Siegrist F (2011) Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature470: 419-423

DOI

11
Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA, Shliaha PV, Fidalgo M, Saunders A, Lawrence M, Dietmann S (2013) NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature495: 370-374

DOI

12
Cui XS, Shen XH, Kim NH (2007) Dicer1 expression in preimplantation mouse embryos: Involvement of Oct3/4 transcription at the blastocyst stage. Biochemical and biophysical research communications352: 231-236

DOI

13
Derijck A, van der Heijden G, Giele M, Philippens M, de Boer P (2008) DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum mol genet17: 1922-1937

DOI

14
Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R, Guarnieri P, Bhagat G, Vanti WB, Shih A (2012) Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature488: 652-655

DOI

15
Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature473: 398-402

DOI

16
Gao Y, Chen J, Li K, Wu T, Huang B, Liu W, Kou X, Zhang Y, Huang H, Jiang Y (2013) Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell stem cell12: 453-469

DOI

17
Gaudet F, Rideout WM 3rd, Meissner A, Dausman J, Leonhardt H, Jaenisch R (2004) Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing. Mol cell biol24: 1640-1648

DOI

18
Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature477: 606-610

DOI

19
Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA (2010) Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science329: 78-82

DOI

20
He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science333: 1303-1307

DOI

21
Hirasawa R, Chiba H, Kaneda M, Tajima S, Li E, Jaenisch R, Sasaki H (2008) Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes dev22: 1607-1616

DOI

22
Hitoshi S, Ishino Y, Kumar A, Jasmine S, Tanaka KF, Kondo T, Kato S, Hosoya T, Hotta Y, Ikenaka K (2011) Mammalian Gcm genes induce Hes5 expression by active DNA demethylation and induce neural stem cells. Nat neurosci14: 957-964

DOI

23
Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM, Chaillet JR (2001) Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell104: 829-838

DOI

24
Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A (2010) The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PloS One5: e8888

DOI

25
Huang Y, Chavez L, Chang X, Wang X, Pastor WA, Kang J, Zepeda-Martinez JA, Pape UJ, Jacobsen SE, Peters B (2014) Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proc Natl Acad Sci USA111: 1361-1366

DOI

26
Inoue A, Zhang Y (2011) Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos194

DOI

27
Inoue A, Matoba S, Zhang Y (2012) Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation. Cell res22: 1640-1649

DOI

28
Iqbal K, Jin SG, Pfeifer GP, Szabo PE (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA108: 3642-3647

DOI

29
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science333: 1300-1303

DOI

30
Jeong KS, Lee S (2005) Estimating the total mouse DNA methylation according to the B1 repetitive elements. Biochem biophys res commun 335: 1211-1216

DOI

31
Kang E, Wu G, Ma H, Li Y, Tippner-Hedges R, Tachibana M, Sparman M, Wolf DP, Scholer HR, Mitalipov S (2014) Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos. Nature509: 101-104

DOI

32
Kelsey G, Feil R (2013) New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos Trans R Soc Lond Ser B, Biol sci368: 20110336

DOI

33
Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, Sato S, Nakabayashi K, Hata K, Sotomaru Y (2012) Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS genet8: e1002440

DOI

34
Kono T, Obata Y, Yoshimzu T, Nakahara T, Carroll J (1996) Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nat genet13: 91-94

DOI

35
Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, Park ES, Seo JS, Ogawa H (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature428: 860-864

DOI

36
Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science324: 929-930

DOI

37
Kurihara Y, Kawamura Y, Uchijima Y, Amamo T, Kobayashi H, Asano T, Kurihara H (2008) Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1. Dev biol313: 335-346

DOI

38
Lan L, Nakajima S, Kapetanaki MG, Hsieh CL, Fagerburg M, Thickman K, Rodriguez-Collazo P, Leuba SH, Levine AS, Rapic-Otrin V (2012) Monoubiquitinated histone H2A destabilizes photolesion-containing nucleosomes with concomitant release of UV-damaged DNA-binding protein E3 ligase. J biol chem287: 12036-12049

DOI

39
Lee K, Hamm J, Whitworth K, Spate L, Park KW, Murphy CN, Prather RS (2014) Dynamics of TET family expression in porcine preimplantation embryos is related to zygotic genome activation and required for the maintenance of NANOG. Dev biol386: 86-95

DOI

40
Liu YJ, Nakamura T, Nakano T (2012) Essential role of DPPA3 for chromatin condensation in mouse oocytogenesis. Biol reprod 86: 40

DOI

41
Ma JY, Liang XW, Schatten H, Sun QY (2012) Active DNA demethylation in mammalian preimplantation embryos: new insights and new perspectives. Mol hum reprod18: 333-340

DOI

42
Ma JY, Li M, Luo YB, Song S, Tian D, Yang J, Zhang B, Hou Y, Schatten H, Liu Z (2013) Maternal factors required for oocyte developmental competence in mice: transcriptome analysis of non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) oocytes. Cell Cycle12: 1928-1938

DOI

43
Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature403: 501-502

DOI

44
Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ (2007) Critical roles for Dicer in the female germline. Genes dev21: 682-693

DOI

45
Nakamura T, Arai Y, Umehara H, Masuhara M, Kimura T, Taniguchi H, Sekimoto T, Ikawa M, Yoneda Y, Okabe M (2007) PGC7/ Stella protects against DNA demethylation in early embryogenesis. Nat cell biol9: 64-71

DOI

46
Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K, Matoba S, Tachibana M, Ogura A, Shinkai Y, Nakano T (2012) PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature486: 415-419

47
Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature463: 554-558

DOI

48
Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99: 247-257

DOI

49
Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J (2000) Active demethylation of the paternal genome in the mouse zygote. Curr biol10: 475-478

DOI

50
Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature473: 394-397

DOI

51
Pufulete M, Al-Ghnaniem R, Khushal A, Appleby P, Harris N, Gout S, Emery PW, Sanders TA (2005) Effect of folic acid supplementation on genomic DNA methylation in patients with colorectal adenoma. Gut54: 648-653

DOI

52
Rougier N, Bourc’his D, Gomes DM, Niveleau A, Plachot M, Paldi A, Viegas-Pequignot E (1998) Chromosome methylation patterns during mammalian preimplantation development. Genes dev12: 2108-2113

DOI

53
Ruzov A, Tsenkina Y, Serio A, Dudnakova T, Fletcher J, Bai Y, Chebotareva T, Pells S, Hannoun Z, Sullivan G (2011) Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell res21: 1332-1342

DOI

54
Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev biol241: 172-182

DOI

55
Singh S, Li SS (2012) Epigenetic effects of environmental chemicals bisphenol a and phthalates. Int j mol sci13: 10143-10153

DOI

56
Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S, Hata K, Andrews SR, Kelsey G (2011) Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat genet43: 811-814

DOI

57
Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, Meissner A (2012) A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature484: 339-344

DOI

58
Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat biotechnol29: 68-72

DOI

59
Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, Street C, Li Y, Poidevin M, Wu H (2013) Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell153: 678-691

DOI

60
Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature308: 548-550

DOI

61
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science324: 930-935

DOI

62
Tan L, Shi YG (2012) Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development139: 1895-1902

DOI

63
Thuan NV, Kishigami S, Wakayama T (2010) How to improve the success rate of mouse cloning technology. J reprod Dev56: 20-30

DOI

64
van Meel FC, Pearson PL (1979) Replacement of protamine by F1 histone during reactivation of fused human sperm nuclei. Histochemistry 63: 329-339

DOI

65
Wang T, Wu H, Li Y, Szulwach KE, Lin L, Li X, Chen IP, Goldlust IS, Chamberlain SJ, Dodd A (2013) Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifications during reprogramming to pluripotency. Nat cell biol15: 700-711

DOI

66
Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, Yang L, Li G, Ci W, Li W (2014) Programming and inheritance of parental DNA methylomes in mammals. Cell157: 979-991

DOI

67
Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J, Helin K (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature473: 343-348

DOI

68
Wossidlo M, Arand J, Sebastiano V, Lepikhov K, Boiani M, Reinhardt R, Scholer H, Walter J (2010) Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO j29: 1877-1888

DOI

69
Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat commun2: 241

DOI

70
Wu H, D’Alessio AC, Ito S, Wang Z, Cui K, Zhao K, Sun YE, Zhang Y (2011) Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes dev25: 679-684

DOI

71
Yang X, Smith SL, Tian XC, Lewin HA, Renard JP, Wakayama T (2007) Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat genet39: 295-302

DOI

72
Yu C, Zhang YL, Pan WW, Li XM, Wang ZW, Ge ZJ, Zhou JJ, Cang Y, Tong C, Sun QY (2013) CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science342: 1518-1521

DOI

73
Zhang Q, Liu X, Gao W, Li P, Hou J, Li J, Wong J (2014) Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked beta-N-acetylglucosamine transferase (OGT). J biol chem289: 5986-5996

DOI

74
Zhao H, Chen T (2013) Tet family of 5-methylcytosine dioxygenases in mammalian development. J Hum genet58: 421-427

DOI

75
Zhu G, Li Y, Zhu F, Wang T, Jin W, Mu W, Lin W, Tan W, Li W, Street RC (2014) Coordination of Engineered Factors with TET1/2 Promotes Early-Stage Epigenetic Modification during Somatic Cell Reprogramming. Stem cell reports2: 253-261

DOI

76
Ziegler-Birling C, Helmrich A, Tora L, Torres-Padilla ME (2009) Distribution of p53 binding protein 1 (53BP1) and phosphorylated H2A.X during mouse preimplantation development in the absence of DNA damage. Int j dev biol53: 1003-1011

DOI

Outlines

/