Molecules and mechanisms controlling the active DNA demethylation of the mammalian zygotic genome
Jun-Yu Ma, Teng Zhang, Wei Shen, Heide Schatten, Qing Yuan Sun
Molecules and mechanisms controlling the active DNA demethylation of the mammalian zygotic genome
The active DNA demethylation in early embryos is essential for subsequent development. Although the zygotic genome is globally demethylated, the DNA methylation of imprinted regions, part of repeat sequences and some gamete-specific regions are maintained. Recent evidence has shown that multiple proteins and biological pathways participate in the regulation of active DNA demethylation, such as TET proteins, DNA repair pathways and DNA methyltransferases. Here we review the recent understanding regarding proteins associated with active DNA demethylation and the regulatory networks controlling the active DNA demethylation in early embryos.
active DNA demethylation / zygote / 5-hmC / 5-mC / preimplantation embryo / TET proteins
[1] |
Arioka Y, Watanabe A, Saito K, Yamada Y (2012) Activation-induced cytidine deaminase alters the subcellular localization of Tet family proteins. PloS One7: e45031
CrossRef
Google scholar
|
[2] |
Benetti R, Gonzalo S, Jaco I, Munoz P, <?Pub Caret1?>Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen T, Klatt P
CrossRef
Google scholar
|
[3] |
Blaschke K, Ebata KT, Karimi MM, Zepeda-Martinez JA, Goyal P, Mahapatra S, Tam A, Laird DJ, Hirst M, Rao A
CrossRef
Google scholar
|
[4] |
Borgel J, Guibert S, Li Y, Chiba H, Schubeler D, Sasaki H, Forne T, Weber M (2010) Targets and dynamics of promoterDNAmethylation during early mouse development. Nature genetics42: 1093-1100
CrossRef
Google scholar
|
[5] |
Bortvin A, Goodheart M, Liao M, Page DC (2004) Dppa3/Pgc7/stella is a maternal factor and is not required for germ cell specification in mice. BMC dev biol4: 2
CrossRef
Google scholar
|
[6] |
Chen X, Zhang Y, Douglas L, Zhou P (2001) UV-damaged DNAbinding proteins are targets of CUL-4A-mediated ubiquitination and degradation. J biol chem276: 48175-48182
|
[7] |
Chen Z, Liu Z, Huang J, Amano T, Li C, Cao S, Wu C, Liu B, Zhou L, Carter MG
CrossRef
Google scholar
|
[8] |
Chen CC, Wang KY, Shen CK (2012) The mammalian de novo DNA methyltransferases DNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases. J biol chem287: 33116-33121
CrossRef
Google scholar
|
[9] |
Cirio MC, Ratnam S, Ding F, Reinhart B, Navara C, Chaillet JR (2008) Preimplantation expression of the somatic form of Dnmt1 suggests a role in the inheritance of genomic imprints. BMC dev biol8: 9
CrossRef
Google scholar
|
[10] |
Cortazar D, Kunz C, Selfridge J, Lettieri T, Saito Y, MacDougall E, Wirz A, Schuermann D, Jacobs AL, Siegrist F
CrossRef
Google scholar
|
[11] |
Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA, Shliaha PV, Fidalgo M, Saunders A, Lawrence M, Dietmann S
CrossRef
Google scholar
|
[12] |
Cui XS, Shen XH, Kim NH (2007) Dicer1 expression in preimplantation mouse embryos: Involvement of Oct3/4 transcription at the blastocyst stage. Biochemical and biophysical research communications352: 231-236
CrossRef
Google scholar
|
[13] |
Derijck A, van der Heijden G, Giele M, Philippens M, de Boer P (2008) DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum mol genet17: 1922-1937
CrossRef
Google scholar
|
[14] |
Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R, Guarnieri P, Bhagat G, Vanti WB, Shih A
CrossRef
Google scholar
|
[15] |
Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature473: 398-402
CrossRef
Google scholar
|
[16] |
Gao Y, Chen J, Li K, Wu T, Huang B, Liu W, Kou X, Zhang Y, Huang H, Jiang Y
CrossRef
Google scholar
|
[17] |
Gaudet F, Rideout WM 3rd, Meissner A, Dausman J, Leonhardt H, Jaenisch R (2004) Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing. Mol cell biol24: 1640-1648
CrossRef
Google scholar
|
[18] |
Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG
CrossRef
Google scholar
|
[19] |
Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA (2010) Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science329: 78-82
CrossRef
Google scholar
|
[20] |
He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L
CrossRef
Google scholar
|
[21] |
Hirasawa R, Chiba H, Kaneda M, Tajima S, Li E, Jaenisch R, Sasaki H (2008) Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes dev22: 1607-1616
CrossRef
Google scholar
|
[22] |
Hitoshi S, Ishino Y, Kumar A, Jasmine S, Tanaka KF, Kondo T, Kato S, Hosoya T, Hotta Y, Ikenaka K (2011) Mammalian Gcm genes induce Hes5 expression by active DNA demethylation and induce neural stem cells. Nat neurosci14: 957-964
CrossRef
Google scholar
|
[23] |
Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM, Chaillet JR (2001) Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell104: 829-838
CrossRef
Google scholar
|
[24] |
Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A (2010) The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PloS One5: e8888
CrossRef
Google scholar
|
[25] |
Huang Y, Chavez L, Chang X, Wang X, Pastor WA, Kang J, Zepeda-Martinez JA, Pape UJ, Jacobsen SE, Peters B
CrossRef
Google scholar
|
[26] |
Inoue A, Zhang Y (2011) Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos194
CrossRef
Google scholar
|
[27] |
Inoue A, Matoba S, Zhang Y (2012) Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation. Cell res22: 1640-1649
CrossRef
Google scholar
|
[28] |
Iqbal K, Jin SG, Pfeifer GP, Szabo PE (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA108: 3642-3647
CrossRef
Google scholar
|
[29] |
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science333: 1300-1303
CrossRef
Google scholar
|
[30] |
Jeong KS, Lee S (2005) Estimating the total mouse DNA methylation according to the B1 repetitive elements. Biochem biophys res commun 335: 1211-1216
CrossRef
Google scholar
|
[31] |
Kang E, Wu G, Ma H, Li Y, Tippner-Hedges R, Tachibana M, Sparman M, Wolf DP, Scholer HR, Mitalipov S (2014) Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos. Nature509: 101-104
CrossRef
Google scholar
|
[32] |
Kelsey G, Feil R (2013) New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos Trans R Soc Lond Ser B, Biol sci368: 20110336
CrossRef
Google scholar
|
[33] |
Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, Sato S, Nakabayashi K, Hata K, Sotomaru Y
CrossRef
Google scholar
|
[34] |
Kono T, Obata Y, Yoshimzu T, Nakahara T, Carroll J (1996) Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nat genet13: 91-94
CrossRef
Google scholar
|
[35] |
Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, Park ES, Seo JS, Ogawa H (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature428: 860-864
CrossRef
Google scholar
|
[36] |
Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science324: 929-930
CrossRef
Google scholar
|
[37] |
Kurihara Y, Kawamura Y, Uchijima Y, Amamo T, Kobayashi H, Asano T, Kurihara H (2008) Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1. Dev biol313: 335-346
CrossRef
Google scholar
|
[38] |
Lan L, Nakajima S, Kapetanaki MG, Hsieh CL, Fagerburg M, Thickman K, Rodriguez-Collazo P, Leuba SH, Levine AS, Rapic-Otrin V (2012) Monoubiquitinated histone H2A destabilizes photolesion-containing nucleosomes with concomitant release of UV-damaged DNA-binding protein E3 ligase. J biol chem287: 12036-12049
CrossRef
Google scholar
|
[39] |
Lee K, Hamm J, Whitworth K, Spate L, Park KW, Murphy CN, Prather RS (2014) Dynamics of TET family expression in porcine preimplantation embryos is related to zygotic genome activation and required for the maintenance of NANOG. Dev biol386: 86-95
CrossRef
Google scholar
|
[40] |
Liu YJ, Nakamura T, Nakano T (2012) Essential role of DPPA3 for chromatin condensation in mouse oocytogenesis. Biol reprod 86: 40
CrossRef
Google scholar
|
[41] |
Ma JY, Liang XW, Schatten H, Sun QY (2012) Active DNA demethylation in mammalian preimplantation embryos: new insights and new perspectives. Mol hum reprod18: 333-340
CrossRef
Google scholar
|
[42] |
Ma JY, Li M, Luo YB, Song S, Tian D, Yang J, Zhang B, Hou Y, Schatten H, Liu Z
CrossRef
Google scholar
|
[43] |
Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature403: 501-502
CrossRef
Google scholar
|
[44] |
Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ (2007) Critical roles for Dicer in the female germline. Genes dev21: 682-693
CrossRef
Google scholar
|
[45] |
Nakamura T, Arai Y, Umehara H, Masuhara M, Kimura T, Taniguchi H, Sekimoto T, Ikawa M, Yoneda Y, Okabe M
CrossRef
Google scholar
|
[46] |
Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K, Matoba S, Tachibana M, Ogura A, Shinkai Y, Nakano T (2012) PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature486: 415-419
|
[47] |
Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature463: 554-558
CrossRef
Google scholar
|
[48] |
Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99: 247-257
CrossRef
Google scholar
|
[49] |
Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J (2000) Active demethylation of the paternal genome in the mouse zygote. Curr biol10: 475-478
CrossRef
Google scholar
|
[50] |
Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P
CrossRef
Google scholar
|
[51] |
Pufulete M, Al-Ghnaniem R, Khushal A, Appleby P, Harris N, Gout S, Emery PW, Sanders TA (2005) Effect of folic acid supplementation on genomic DNA methylation in patients with colorectal adenoma. Gut54: 648-653
CrossRef
Google scholar
|
[52] |
Rougier N, Bourc’his D, Gomes DM, Niveleau A, Plachot M, Paldi A, Viegas-Pequignot E (1998) Chromosome methylation patterns during mammalian preimplantation development. Genes dev12: 2108-2113
CrossRef
Google scholar
|
[53] |
Ruzov A, Tsenkina Y, Serio A, Dudnakova T, Fletcher J, Bai Y, Chebotareva T, Pells S, Hannoun Z, Sullivan G
CrossRef
Google scholar
|
[54] |
Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev biol241: 172-182
CrossRef
Google scholar
|
[55] |
Singh S, Li SS (2012) Epigenetic effects of environmental chemicals bisphenol a and phthalates. Int j mol sci13: 10143-10153
CrossRef
Google scholar
|
[56] |
Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S, Hata K, Andrews SR, Kelsey G (2011) Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat genet43: 811-814
CrossRef
Google scholar
|
[57] |
Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, Meissner A (2012) A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature484: 339-344
CrossRef
Google scholar
|
[58] |
Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X
CrossRef
Google scholar
|
[59] |
Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, Street C, Li Y, Poidevin M, Wu H
CrossRef
Google scholar
|
[60] |
Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature308: 548-550
CrossRef
Google scholar
|
[61] |
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L
CrossRef
Google scholar
|
[62] |
Tan L, Shi YG (2012) Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development139: 1895-1902
CrossRef
Google scholar
|
[63] |
Thuan NV, Kishigami S, Wakayama T (2010) How to improve the success rate of mouse cloning technology. J reprod Dev56: 20-30
CrossRef
Google scholar
|
[64] |
van Meel FC, Pearson PL (1979) Replacement of protamine by F1 histone during reactivation of fused human sperm nuclei. Histochemistry 63: 329-339
CrossRef
Google scholar
|
[65] |
Wang T, Wu H, Li Y, Szulwach KE, Lin L, Li X, Chen IP, Goldlust IS, Chamberlain SJ, Dodd A
CrossRef
Google scholar
|
[66] |
Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, Yang L, Li G, Ci W, Li W
CrossRef
Google scholar
|
[67] |
Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J, Helin K (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature473: 343-348
CrossRef
Google scholar
|
[68] |
Wossidlo M, Arand J, Sebastiano V, Lepikhov K, Boiani M, Reinhardt R, Scholer H, Walter J (2010) Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO j29: 1877-1888
CrossRef
Google scholar
|
[69] |
Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat commun2: 241
CrossRef
Google scholar
|
[70] |
Wu H, D’Alessio AC, Ito S, Wang Z, Cui K, Zhao K, Sun YE, Zhang Y (2011) Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes dev25: 679-684
CrossRef
Google scholar
|
[71] |
Yang X, Smith SL, Tian XC, Lewin HA, Renard JP, Wakayama T (2007) Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat genet39: 295-302
CrossRef
Google scholar
|
[72] |
Yu C, Zhang YL, Pan WW, Li XM, Wang ZW, Ge ZJ, Zhou JJ, Cang Y, Tong C, Sun QY
CrossRef
Google scholar
|
[73] |
Zhang Q, Liu X, Gao W, Li P, Hou J, Li J, Wong J (2014) Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked beta-N-acetylglucosamine transferase (OGT). J biol chem289: 5986-5996
CrossRef
Google scholar
|
[74] |
Zhao H, Chen T (2013) Tet family of 5-methylcytosine dioxygenases in mammalian development. J Hum genet58: 421-427
CrossRef
Google scholar
|
[75] |
Zhu G, Li Y, Zhu F, Wang T, Jin W, Mu W, Lin W, Tan W, Li W, Street RC
CrossRef
Google scholar
|
[76] |
Ziegler-Birling C, Helmrich A, Tora L, Torres-Padilla ME (2009) Distribution of p53 binding protein 1 (53BP1) and phosphorylated H2A.X during mouse preimplantation development in the absence of DNA damage. Int j dev biol53: 1003-1011
CrossRef
Google scholar
|
/
〈 | 〉 |