REVIEW

The recombinant expression systems for structure determination of eukaryotic membrane proteins

  • Yuan He 1,2 ,
  • Kan Wang 3 ,
  • Nieng Yan , 1,2
Expand
  • 1. State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua university, Beijing 100084, China
  • 2. Center for Structural Biology, School of Medicine, Tsinghua university, Beijing 100084, China
  • 3. China-Japan Friendship Hospital, Beijing 100029, China

Received date: 16 May 2014

Accepted date: 16 Jun 2014

Published date: 25 Sep 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Eukaryotic membrane proteins, many of which are key players in various biological processes, constitute more than half of the drug targets and represent important candidates for structural studies. In contrast to their physiological significance, only very limited number of eukaryotic membrane protein structures have been obtained due to the technical challenges in the generation of recombinant proteins. In this review, we examine the major recombinant expression systems for eukaryotic membrane proteins and compare their relative advantages and disadvantages. We also attempted to summarize the recent technical strategies in the advancement of eukaryotic membrane protein purification and crystallization.

Cite this article

Yuan He , Kan Wang , Nieng Yan . The recombinant expression systems for structure determination of eukaryotic membrane proteins[J]. Protein & Cell, 2014 , 5(9) : 658 -672 . DOI: 10.1007/s13238-014-0086-4

1
Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370: 621−628

2
AegeanSoftware (2005) NoteExpress, 2.0 edn. (NoteExpress is a perfect assistant and information manager for researchers, scholars, students, and librarians. NoteExpress is designed to help you organize research notes and bibliographic references, generate bibliographies automatically, search and capture bibliographic data from Internet with efflciency and ease. NoteExpress is well integrated with Microsoft Word. It can format bibliographies in many popular styles)

3
Agah S, Faham S (2012) Crystallization of membrane proteins in bicelles. Methods Mol Biol 914: 3−16

4
Ago H, Kanaoka Y, Irikura D, Lam BK, Shimamura T, Austen KF, Miyano M (2007) Crystal structure of a human membrane protein involved in cysteinyl leukotriene biosynthesis. Nature 448: 609−612

5
Aisenbrey C, Borowik T, Bystrom R, Bokvist M, Lindstrom F, Misiak H, Sani MA, Grobner G (2008) How is protein aggregation in amyloidogenic diseases modulated by biological membranes? Eur Biophys J 37: 247−255

6
Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL (2009) Structure of P-glycoprotein reveals a molecular basis for poly-speciflc drug binding. Science 323: 1718−1722

7
Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystemI supercomplex at 3.4. A resolution. Nature 447: 58−63

8
Baconguis I, Gouaux E (2012) Structural plasticity and dynamic selectivity of acid-sensing ion channel−spider toxin complexes. Nature 489: 400−405

9
Baldwin SL, Powell TD, Wonderling RS, Keiser KC, Morales T, Hunter S, McDermott M, Radecki SV, Milhausen MJ (2003) Transient and stable transfection of Chinese hamster ovary cells with the recombinant feline erythropoietin gene and expression, puriflcation, and biological activity of feline erythropoietin protein. Am J Vet Res 64: 1465−1471

10
Bernaudat F, Frelet-Barrand A, Pochon N, Dementin S, Hivin P, Boutigny S, Rioux JB, Salvi D, Seigneurin-Berny D, Richaud P (2011) Heterologous expression of membrane proteins: choosing the appropriate host. PLoS One 6: e29191

11
Bill RM, Henderson PJ, Iwata S, Kunji ER, Michel H, Neutze R, Newstead S, Poolman B, Tate CG, Vogel H (2011) Overcoming barriers to membrane protein structure determination. Nat Biotechnol 29: 335−340

12
Bkaily G, Al-Khoury J, Jacques D (2014) Nuclear membranes GPCRs: implication in cardiovascular health and diseases. Curr Vasc Pharmacol 12(2): 215−222

13
Bornert O, Alkhalfloui F, Logez C, Wagner R (2012) Overexpression of membrane proteins using Pichia pastoris. Curr Protoc Protein Sci Chapter 29: 22−29

14
Brohawn SG, Del MJ, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335: 436−441

15
Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O (2008) Codon optimization can improve expression of human genes in Escherichia coli: a multi-gene study. Protein Exp Purif 59: 94−102

16
Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4: 706−731

17
Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504: 113−118

18
Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. Fems Microbiol Rev 24: 45−66

19
Chae PS, Rasmussen SG, Rana RR, Gotfryd K, Chandra R, Goren MA, Kruse AC, Nurva S, Loland CJ, Pierre Y (2010) Maltoseneopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7: 1003−1008

20
Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK (2007) High-resolution crystal structure of an engineered human beta2- adrenergic G protein-coupled receptor. Science 318: 1258−1265

21
Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330: 1091−1095

22
Ciccarone VC, Polayes DA, Luckow VA (1998) Generation of recombinant baculovirus DNA in E. coli using a baculovirus shuttle vector. Methods Mol Med 13: 213−235

23
Condreay JP, Witherspoon SM, Clay WC, Kost TA (1999) Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. ProcNatl Acad SciUSA 96: 127−132

24
Contreras-Gomez A, Sanchez-Miron A, Garcia-Camacho F, Molina-Grima E, Chisti Y (2014) Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 30: 1−18

25
Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18: 119−138

26
Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N (2014) Crystal structure of the human glucose transporter GLUT1. Nature 510: 121−125

27
Drew D, Lerch M, Kunji E, Slotboom DJ, de Gier JW (2006) Optimization of membrane protein overexpression and puriflcation using GFP fusions. Nat Methods 3: 303−313

28
Dukkipati A, Park HH, Waghray D, Fischer S, Garcia KC (2008) BacMam system for high-level expression of recombinant soluble and membrane glycoproteins for structural studies. Protein Exp Purif 62: 160−170

29
Dumon-Seignovert L, Cariot G, Vuillard L (2004) The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr Purif 37: 203−206

30
Feng L, Campbell EB, Hsiung Y, MacKinnon R (2010) Structure of a eukaryotic CLC transporter deflnes an intermediate state in the transport cycle. Science 330: 635−641

31
Ferguson AD, McKeever BM, Xu S, Wisniewski D, Miller DK, Yamin TT, Spencer RH, Chu L, Ujjainwalla F, Cunningham BR (2007) Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein. Science 317: 510−512

32
Gonzales EB, Kawate T, Gouaux E (2009) Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460: 599−604

33
Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK (2012) Structure of the delta-opioid receptor bound to naltrindole. Nature 485: 400−404

34
Gruswitz F, Chaudhary S, Ho JD, Schlessinger A, Pezeshki B, Ho CM, Sali A, Westhoff CM, Stroud RM (2010) Function of human Rh based on structure of RhCG at 2.1 A. Proc Natl Acad Sci USA 107: 9638−9643

35
Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482: 547−551

36
Hanson MA, Roth CB, Jo E, Grifflth MT, Scott FL, Reinhart G, Desale H, Clemons B, Cahalan SM, Schuerer SC (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335: 851−855

37
Hattori M, Gouaux E (2012) Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485: 207−212

38
Hibbs RE, Gouaux E (2011) Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474: 54−60

39
Ho JD, Yeh R, Sandstrom A, Chorny I, Harries WE, Robbins RA, Miercke LJ, Stroud RM (2009) Crystal structure of human aquaporin 4 at 1.8. A and its mechanism of conductance. Proc Natl Acad Sci USA 106: 7437−7442

40
Hollenstein K, Kean J, Bortolato A, Cheng RK, Dore AS, Jazayeri A, Cooke RM, Weir M, Marshall FH (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499: 438−443

41
Horsefleld R, Norden K, Fellert M, Backmark A, Tornroth-Horsefleld S, Terwisscha VSA, Kvassman J, Kjellbom P, Johanson U, Neutze R (2008) High-resolution x-ray structure of human aquaporin 5. Proc Natl Acad Sci USA 105: 13327−13332

42
Ishikawa Y, Inoue N, Zhenfang Y, Nakae Y (2004) Molecular mechanisms and drug development in aquaporin water channel diseases: the translocation of aquaporin-5 from lipid rafts to the apical plasma membranes of parotid glands of normal rats and the impairment of it in diabetic or aged rats. J Pharmacol Sci 96: 271−275

43
Jaakola VP, Grifflth MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322: 1211−1217

44
Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9. A resolution and low pH. Nature 449: 316−323

45
Jin MS, Oldham ML, Zhang Q, Chen J (2012) Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490: 566−569

46
Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460: 592−598

47
Khan KH (2013) Gene expression in mammalian cells and its applications. Adv Pharm Bull 3: 257−263

48
Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23: 567−575

49
Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567−580

50
Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482: 552−556

51
Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302: 1009−1014

52
Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci USA 93: 14532−14535

53
Levin EJ, Cao Y, Enkavi G, Quick M, Pan Y, Tajkhorshid E, Zhou M (2012) Structure and permeation mechanism of a mammalian urea transporter. Proc Natl Acad Sci USA 109: 11194−11199

54
Li P, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Duzgunes N, Renugopalakrishnan V(2007) Expression of recombinant proteins in Pichia pastoris. Appl Biochem Biotechnol 142: 105−124

55
Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504: 107−112

56
Lin SM, Tsai JY, Hsiao CD, Huang YT, Chiu CL, Liu MH, Tung JY, Liu TH, Pan RL, Sun YJ (2012) Crystal structure of a membraneembedded H+-translocating pyrophosphatase. Nature 484: 399−403

57
Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72. A resolution. Nature 428: 287−292

58
Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309: 897−903

59
Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450: 376−382

60
Louis N, Evelegh C, Graham FL(1997) Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line. Virology 233: 423−429

61
Lu P, Ma D, Yan C, Gong X, Du M, Shi Y (2014) Structure and mechanism of a eukaryotic transmembrane ascorbate-dependent oxidoreductase. Proc Natl Acad Sci USA 111(5): 1813−1818

62
Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249−270

63
Maeda S, Kawai T, Obinata M, Fujiwara H, Horiuchi T, Saeki Y, Sato Y, Furusawa M (1985) Production of human alpha-interferon in silkworm using a baculovirus vector. Nature 315: 592−594

64
Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, Fujiyoshi Y, Tsukihara T (2009) Structure of the connexin 26 gap junction channel at 3.5. A resolution. Nature 458: 597−602

65
Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S(2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485: 321−326

66
Mijakovic I, Petranovic D, Macek B, Cepo T, Mann M, Davies J, Jensen PR, Vujaklija D (2006) Bacterial single-stranded DNAbinding proteins are phosphorylated on tyrosine. Nucleic Acids Res 34: 1588−1596

67
Miller AN, Long SB (2012) Crystal structure of the human two-pore domain potassium channel K2P1. Science 335: 432−436

68
Mironova R, Niwa T, Handzhiyski Y, Sredovska A, Ivanov I (2005) Evidence for non-enzymatic glycosylation of Escherichia coli chromosomal DNA. Mol Microbiol 55: 1801−1811

69
Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260: 289−298

70
Murray CW, Verdonk ML, Rees DC (2012) Experiences in fragmentbased drug discovery. Trends Pharmacol Sci 33: 224−232

71
Neophytou I, Harvey R, Lawrence J, Marsh P, Panaretou B, Barlow D (2007) Eukaryotic integral membrane protein expression utilizing the Escherichia coli glycerol-conducting channel protein (GlpF). Appl Microbiol Biotechnol 77: 375−381

72
Newby ZE, O’Connell JR, Robles-Colmenares Y, Khademi S, Miercke LJ, Stroud RM (2008) Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum. Nat Struct Mol Biol 15: 619−625

73
Newstead S, Kim H, von Heijne G, Iwata S, Drew D (2007) Highthroughput fluorescent-based optimization of eukaryotic membrane protein overexpression and puriflcation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104: 13936−13941

74
Nishida M, Cadene M, Chait BT, MacKinnon R (2007) Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. Embo J 26: 4005−4015

75
Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5: 993−996

76
Parker JL, Newstead S (2014) Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507: 68−72

77
Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475: 353−358

78
Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P (2007) Crystal structure of the plasma membrane proton pump. Nature 450: 1111−1114

79
Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, Schlessinger A, Bonomi M, Harries W, Sali A (2013) Crystal structure of a eukaryotic phosphate transporter.Nature 496: 533−536

80
Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503: 85−90

81
Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459: 379−385

82
Pryor EJ, Horanyi PS, Clark KM, Fedoriw N, Connelly SM, Koszelak-Rosenblum M, Zhu G, Malkowski MG, Wiener MC, Dumont ME (2013) Structure of the integral membrane protein CAAX protease Ste24p. Science 339: 1600−1604

83
Quigley A, Dong YY, Pike AC, Dong L, Shrestha L, Berridge G, Stansfeld PJ, Sansom MS, Edwards AM, Bountra C (2013) The structural basis of ZMPSTE24-dependent laminopathies. Science 339: 1604−1607

84
Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450: 383−387

85
Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS (2011a) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469: 175−180

86
Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D (2011b) Crystal structure of the beta2 adrenergic receptor-Gs protein complex.Nature 477: 549−555

87
Reeves PJ, Callewaert N, Contreras R, Khorana HG (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci USA 99: 13419−13424

88
Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK (2011) Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469: 236−240

89
Russell RB, Eggleston DS (2000) New roles for structure in biology and drug discovery. Nat Struct Biol 7(Suppl): 928−930

90
Sahdev S, Khattar SK, Saini KS(2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307: 249−264

91
Sanders CR, Myers JK (2004) Disease-related misassembly of membrane proteins. Annu Rev Biophys Biomol Struct 33: 25−51

92
Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475: 65−70

93
Shintre CA, Pike AC, Li Q, Kim JI, Barr AJ, Goubin S, Shrestha L, Yang J, Berridge G, Ross J (2013) Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotidebound states. Proc Natl Acad Sci USA 110: 9710−9715

94
Siu FY, He M, de Graaf C, Han GW, Yang D, Zhang Z, Zhou C, Xu Q, Wacker D, Joseph JS (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499: 444−449

95
Smith GE, Summers MD, Fraser MJ (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3: 2156−2165

96
Snider C, Stephen HW (2014) Membrane proteins of known 3D structure.

97
Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462: 745−756

98
Standfuss J, Xie G, Edwards PC, Burghammer M, Oprian DD, Schertler GF (2007) Crystal structure of a thermally stable rhodopsin mutant. J Mol Biol 372: 1179−1188

99
Strausberg RL, Strausberg SL (2001) Overview of protein expression in saccharomyces cerevisiae. Curr Protoc Protein Sci Chapter 5: t5−t6

100
Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M, Rao Z (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121: 1043−1057

101
Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N (2014) Crystal structure of the plant dual-afflnity nitrate transporter NRT1.1. Nature 507: 73−77

102
Sunley K, Butler M (2010) Strategies for the enhancement of recombinant protein production from mammalian cells by growth arrest. Biotechnol Adv 28: 385−394

103
Suzuki H, Nishizawa T, Tani K, Yamazaki Y, Tamura A, Ishitani R, Dohmae N, Tsukita S, Nureki O, Fujiyoshi Y (2014) Crystal structure of a claudin provides insight into the architecture of tight junctions. Science 344: 304−307

104
Tan Q, Zhu Y, Li J, Chen Z, Han GW, Kufareva I, Li T, Ma L, Fenalti G, Li J (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341: 1387−1390

105
Tao X, Avalos JL, Chen J, MacKinnon R (2009) Crystal structure of the eukaryotic strong inward-rectifler K+ channel Kir2.2 at 3.1 A resolution. Science 326: 1668−1674

106
Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R (2010) A gatingchargetransfer center in voltage sensors. Science 328: 67−73

107
Thomas P, Smart TG (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51: 187−200

108
Thompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E, Huang XP, Trapella C, Guerrini R, Calo G (2012) Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485: 395−399

109
Tornroth-Horsefleld S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439: 688−694

110
Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272: 1136−1144

111
Unger T, Peleg Y (2012) Recombinant protein expression in the baculovirus-infected insect cell system. Methods Mol Biol 800: 187−199

112
van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9: 112−124

113
Wacker D, Wang C, Katritch V, Han GW, Huang XP, Vardy E, McCorvy JD, Jiang Y, Chu M, Siu FY (2013) Structural features for functional selectivity at serotonin receptors. Science 340: 615−619

114
Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W, Huang XP, Vardy E (2013a) Structural basis for molecular recognition at serotonin receptors. Science 340: 610−614

115
Wang C, Wu H, Katritch V, Han GW, Huang XP, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC (2013b) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497: 338−343

116
Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454: 486−491

117
White JF, Noinaj N, Shibata Y, Love J, Kloss B, Xu F, Gvozdenovic-Jeremic J, Shah P, Shiloach J, Tate CG (2012) Structure of the agonist-bound neurotensin receptor. Nature 490: 508−513

118
Whorton MR, MacKinnon R (2011) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147: 199−208

119
Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330: 1066−1071

120
Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485: 327−332

121
Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344: 58−64

122
Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277: 60−66

123
Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel orai. Science 338 (6112): 1308−1313

124
Yang Y, Hu Z, Liu Z, Wang Y, Chen X, Chen G (2009) High human GLUT1, GLUT2, and GLUT3 expression in Schizosaccharomyces pombe. Biochemistry (Mosc) 74: 75−80

125
Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M (2007) Drugtarget network. Nat Biotechnol. 25: 1119−1126

126
Yurimoto H, Sakai Y (2009) Methanol-inducible gene expression and heterologous protein production in the methylotrophic yeast Candida boidinii. Biotechnol Appl Biochem 53: 85−92

127
Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE (2012) Highresolution crystal structure of human protease-activated receptor 1. Nature 492: 387−392

128
Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0. A resolution. Nature 414: 43−48

129
Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30: 1158−1170

Outlines

/