The recombinant expression systems for structure determination of eukaryotic membrane proteins

Yuan He, Kan Wang, Nieng Yan

PDF(259 KB)
PDF(259 KB)
Protein Cell ›› 2014, Vol. 5 ›› Issue (9) : 658-672. DOI: 10.1007/s13238-014-0086-4
REVIEW
REVIEW

The recombinant expression systems for structure determination of eukaryotic membrane proteins

Author information +
History +

Abstract

Eukaryotic membrane proteins, many of which are key players in various biological processes, constitute more than half of the drug targets and represent important candidates for structural studies. In contrast to their physiological significance, only very limited number of eukaryotic membrane protein structures have been obtained due to the technical challenges in the generation of recombinant proteins. In this review, we examine the major recombinant expression systems for eukaryotic membrane proteins and compare their relative advantages and disadvantages. We also attempted to summarize the recent technical strategies in the advancement of eukaryotic membrane protein purification and crystallization.

Keywords

eukaryotic membrane proteins / recombinant expression / structural biology / integral membrane proteins (IMPs) / fluorescence detected size exclusion chromatography (FSEC) / protein purification and crystallization

Cite this article

Download citation ▾
Yuan He, Kan Wang, Nieng Yan. The recombinant expression systems for structure determination of eukaryotic membrane proteins. Protein Cell, 2014, 5(9): 658‒672 https://doi.org/10.1007/s13238-014-0086-4

References

[1]
Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370: 621−628
[2]
AegeanSoftware (2005) NoteExpress, 2.0 edn. (NoteExpress is a perfect assistant and information manager for researchers, scholars, students, and librarians. NoteExpress is designed to help you organize research notes and bibliographic references, generate bibliographies automatically, search and capture bibliographic data from Internet with efflciency and ease. NoteExpress is well integrated with Microsoft Word. It can format bibliographies in many popular styles)
[3]
Agah S, Faham S (2012) Crystallization of membrane proteins in bicelles. Methods Mol Biol 914: 3−16
[4]
Ago H, Kanaoka Y, Irikura D, Lam BK, Shimamura T, Austen KF, Miyano M (2007) Crystal structure of a human membrane protein involved in cysteinyl leukotriene biosynthesis. Nature 448: 609−612
[5]
Aisenbrey C, Borowik T, Bystrom R, Bokvist M, Lindstrom F, Misiak H, Sani MA, Grobner G (2008) How is protein aggregation in amyloidogenic diseases modulated by biological membranes? Eur Biophys J 37: 247−255
[6]
Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL (2009) Structure of P-glycoprotein reveals a molecular basis for poly-speciflc drug binding. Science 323: 1718−1722
[7]
Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystemI supercomplex at 3.4. A resolution. Nature 447: 58−63
[8]
Baconguis I, Gouaux E (2012) Structural plasticity and dynamic selectivity of acid-sensing ion channel−spider toxin complexes. Nature 489: 400−405
[9]
Baldwin SL, Powell TD, Wonderling RS, Keiser KC, Morales T, Hunter S, McDermott M, Radecki SV, Milhausen MJ (2003) Transient and stable transfection of Chinese hamster ovary cells with the recombinant feline erythropoietin gene and expression, puriflcation, and biological activity of feline erythropoietin protein. Am J Vet Res 64: 1465−1471
[10]
Bernaudat F, Frelet-Barrand A, Pochon N, Dementin S, Hivin P, Boutigny S, Rioux JB, Salvi D, Seigneurin-Berny D, Richaud P (2011) Heterologous expression of membrane proteins: choosing the appropriate host. PLoS One 6: e29191
[11]
Bill RM, Henderson PJ, Iwata S, Kunji ER, Michel H, Neutze R, Newstead S, Poolman B, Tate CG, Vogel H (2011) Overcoming barriers to membrane protein structure determination. Nat Biotechnol 29: 335−340
[12]
Bkaily G, Al-Khoury J, Jacques D (2014) Nuclear membranes GPCRs: implication in cardiovascular health and diseases. Curr Vasc Pharmacol 12(2): 215−222
[13]
Bornert O, Alkhalfloui F, Logez C, Wagner R (2012) Overexpression of membrane proteins using Pichia pastoris. Curr Protoc Protein Sci Chapter 29: 22−29
[14]
Brohawn SG, Del MJ, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335: 436−441
[15]
Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O (2008) Codon optimization can improve expression of human genes in Escherichia coli: a multi-gene study. Protein Exp Purif 59: 94−102
[16]
Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4: 706−731
[17]
Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504: 113−118
[18]
Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. Fems Microbiol Rev 24: 45−66
[19]
Chae PS, Rasmussen SG, Rana RR, Gotfryd K, Chandra R, Goren MA, Kruse AC, Nurva S, Loland CJ, Pierre Y (2010) Maltoseneopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7: 1003−1008
[20]
Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK (2007) High-resolution crystal structure of an engineered human beta2- adrenergic G protein-coupled receptor. Science 318: 1258−1265
[21]
Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330: 1091−1095
[22]
Ciccarone VC, Polayes DA, Luckow VA (1998) Generation of recombinant baculovirus DNA in E. coli using a baculovirus shuttle vector. Methods Mol Med 13: 213−235
[23]
Condreay JP, Witherspoon SM, Clay WC, Kost TA (1999) Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. ProcNatl Acad SciUSA 96: 127−132
[24]
Contreras-Gomez A, Sanchez-Miron A, Garcia-Camacho F, Molina-Grima E, Chisti Y (2014) Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 30: 1−18
[25]
Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18: 119−138
[26]
Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N (2014) Crystal structure of the human glucose transporter GLUT1. Nature 510: 121−125
[27]
Drew D, Lerch M, Kunji E, Slotboom DJ, de Gier JW (2006) Optimization of membrane protein overexpression and puriflcation using GFP fusions. Nat Methods 3: 303−313
[28]
Dukkipati A, Park HH, Waghray D, Fischer S, Garcia KC (2008) BacMam system for high-level expression of recombinant soluble and membrane glycoproteins for structural studies. Protein Exp Purif 62: 160−170
[29]
Dumon-Seignovert L, Cariot G, Vuillard L (2004) The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr Purif 37: 203−206
[30]
Feng L, Campbell EB, Hsiung Y, MacKinnon R (2010) Structure of a eukaryotic CLC transporter deflnes an intermediate state in the transport cycle. Science 330: 635−641
[31]
Ferguson AD, McKeever BM, Xu S, Wisniewski D, Miller DK, Yamin TT, Spencer RH, Chu L, Ujjainwalla F, Cunningham BR (2007) Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein. Science 317: 510−512
[32]
Gonzales EB, Kawate T, Gouaux E (2009) Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460: 599−604
[33]
Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK (2012) Structure of the delta-opioid receptor bound to naltrindole. Nature 485: 400−404
[34]
Gruswitz F, Chaudhary S, Ho JD, Schlessinger A, Pezeshki B, Ho CM, Sali A, Westhoff CM, Stroud RM (2010) Function of human Rh based on structure of RhCG at 2.1 A. Proc Natl Acad Sci USA 107: 9638−9643
[35]
Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482: 547−551
[36]
Hanson MA, Roth CB, Jo E, Grifflth MT, Scott FL, Reinhart G, Desale H, Clemons B, Cahalan SM, Schuerer SC (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335: 851−855
[37]
Hattori M, Gouaux E (2012) Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485: 207−212
[38]
Hibbs RE, Gouaux E (2011) Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474: 54−60
[39]
Ho JD, Yeh R, Sandstrom A, Chorny I, Harries WE, Robbins RA, Miercke LJ, Stroud RM (2009) Crystal structure of human aquaporin 4 at 1.8. A and its mechanism of conductance. Proc Natl Acad Sci USA 106: 7437−7442
[40]
Hollenstein K, Kean J, Bortolato A, Cheng RK, Dore AS, Jazayeri A, Cooke RM, Weir M, Marshall FH (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499: 438−443
[41]
Horsefleld R, Norden K, Fellert M, Backmark A, Tornroth-Horsefleld S, Terwisscha VSA, Kvassman J, Kjellbom P, Johanson U, Neutze R (2008) High-resolution x-ray structure of human aquaporin 5. Proc Natl Acad Sci USA 105: 13327−13332
[42]
Ishikawa Y, Inoue N, Zhenfang Y, Nakae Y (2004) Molecular mechanisms and drug development in aquaporin water channel diseases: the translocation of aquaporin-5 from lipid rafts to the apical plasma membranes of parotid glands of normal rats and the impairment of it in diabetic or aged rats. J Pharmacol Sci 96: 271−275
[43]
Jaakola VP, Grifflth MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322: 1211−1217
[44]
Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9. A resolution and low pH. Nature 449: 316−323
[45]
Jin MS, Oldham ML, Zhang Q, Chen J (2012) Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490: 566−569
[46]
Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460: 592−598
[47]
Khan KH (2013) Gene expression in mammalian cells and its applications. Adv Pharm Bull 3: 257−263
[48]
Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23: 567−575
[49]
Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567−580
[50]
Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482: 552−556
[51]
Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302: 1009−1014
[52]
Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci USA 93: 14532−14535
[53]
Levin EJ, Cao Y, Enkavi G, Quick M, Pan Y, Tajkhorshid E, Zhou M (2012) Structure and permeation mechanism of a mammalian urea transporter. Proc Natl Acad Sci USA 109: 11194−11199
[54]
Li P, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Duzgunes N, Renugopalakrishnan V(2007) Expression of recombinant proteins in Pichia pastoris. Appl Biochem Biotechnol 142: 105−124
[55]
Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504: 107−112
[56]
Lin SM, Tsai JY, Hsiao CD, Huang YT, Chiu CL, Liu MH, Tung JY, Liu TH, Pan RL, Sun YJ (2012) Crystal structure of a membraneembedded H+-translocating pyrophosphatase. Nature 484: 399−403
[57]
Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72. A resolution. Nature 428: 287−292
[58]
Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309: 897−903
[59]
Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450: 376−382
[60]
Louis N, Evelegh C, Graham FL(1997) Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line. Virology 233: 423−429
[61]
Lu P, Ma D, Yan C, Gong X, Du M, Shi Y (2014) Structure and mechanism of a eukaryotic transmembrane ascorbate-dependent oxidoreductase. Proc Natl Acad Sci USA 111(5): 1813−1818
[62]
Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249−270
[63]
Maeda S, Kawai T, Obinata M, Fujiwara H, Horiuchi T, Saeki Y, Sato Y, Furusawa M (1985) Production of human alpha-interferon in silkworm using a baculovirus vector. Nature 315: 592−594
[64]
Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, Fujiyoshi Y, Tsukihara T (2009) Structure of the connexin 26 gap junction channel at 3.5. A resolution. Nature 458: 597−602
[65]
Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S(2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485: 321−326
[66]
Mijakovic I, Petranovic D, Macek B, Cepo T, Mann M, Davies J, Jensen PR, Vujaklija D (2006) Bacterial single-stranded DNAbinding proteins are phosphorylated on tyrosine. Nucleic Acids Res 34: 1588−1596
[67]
Miller AN, Long SB (2012) Crystal structure of the human two-pore domain potassium channel K2P1. Science 335: 432−436
[68]
Mironova R, Niwa T, Handzhiyski Y, Sredovska A, Ivanov I (2005) Evidence for non-enzymatic glycosylation of Escherichia coli chromosomal DNA. Mol Microbiol 55: 1801−1811
[69]
Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260: 289−298
[70]
Murray CW, Verdonk ML, Rees DC (2012) Experiences in fragmentbased drug discovery. Trends Pharmacol Sci 33: 224−232
[71]
Neophytou I, Harvey R, Lawrence J, Marsh P, Panaretou B, Barlow D (2007) Eukaryotic integral membrane protein expression utilizing the Escherichia coli glycerol-conducting channel protein (GlpF). Appl Microbiol Biotechnol 77: 375−381
[72]
Newby ZE, O’Connell JR, Robles-Colmenares Y, Khademi S, Miercke LJ, Stroud RM (2008) Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum. Nat Struct Mol Biol 15: 619−625
[73]
Newstead S, Kim H, von Heijne G, Iwata S, Drew D (2007) Highthroughput fluorescent-based optimization of eukaryotic membrane protein overexpression and puriflcation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104: 13936−13941
[74]
Nishida M, Cadene M, Chait BT, MacKinnon R (2007) Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. Embo J 26: 4005−4015
[75]
Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5: 993−996
[76]
Parker JL, Newstead S (2014) Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507: 68−72
[77]
Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475: 353−358
[78]
Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P (2007) Crystal structure of the plasma membrane proton pump. Nature 450: 1111−1114
[79]
Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, Schlessinger A, Bonomi M, Harries W, Sali A (2013) Crystal structure of a eukaryotic phosphate transporter.Nature 496: 533−536
[80]
Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503: 85−90
[81]
Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459: 379−385
[82]
Pryor EJ, Horanyi PS, Clark KM, Fedoriw N, Connelly SM, Koszelak-Rosenblum M, Zhu G, Malkowski MG, Wiener MC, Dumont ME (2013) Structure of the integral membrane protein CAAX protease Ste24p. Science 339: 1600−1604
[83]
Quigley A, Dong YY, Pike AC, Dong L, Shrestha L, Berridge G, Stansfeld PJ, Sansom MS, Edwards AM, Bountra C (2013) The structural basis of ZMPSTE24-dependent laminopathies. Science 339: 1604−1607
[84]
Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450: 383−387
[85]
Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS (2011a) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469: 175−180
[86]
Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D (2011b) Crystal structure of the beta2 adrenergic receptor-Gs protein complex.Nature 477: 549−555
[87]
Reeves PJ, Callewaert N, Contreras R, Khorana HG (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci USA 99: 13419−13424
[88]
Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK (2011) Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469: 236−240
[89]
Russell RB, Eggleston DS (2000) New roles for structure in biology and drug discovery. Nat Struct Biol 7(Suppl): 928−930
[90]
Sahdev S, Khattar SK, Saini KS(2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307: 249−264
[91]
Sanders CR, Myers JK (2004) Disease-related misassembly of membrane proteins. Annu Rev Biophys Biomol Struct 33: 25−51
[92]
Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475: 65−70
[93]
Shintre CA, Pike AC, Li Q, Kim JI, Barr AJ, Goubin S, Shrestha L, Yang J, Berridge G, Ross J (2013) Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotidebound states. Proc Natl Acad Sci USA 110: 9710−9715
[94]
Siu FY, He M, de Graaf C, Han GW, Yang D, Zhang Z, Zhou C, Xu Q, Wacker D, Joseph JS (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499: 444−449
[95]
Smith GE, Summers MD, Fraser MJ (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3: 2156−2165
[96]
Snider C, Stephen HW (2014) Membrane proteins of known 3D structure.
[97]
Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462: 745−756
[98]
Standfuss J, Xie G, Edwards PC, Burghammer M, Oprian DD, Schertler GF (2007) Crystal structure of a thermally stable rhodopsin mutant. J Mol Biol 372: 1179−1188
[99]
Strausberg RL, Strausberg SL (2001) Overview of protein expression in saccharomyces cerevisiae. Curr Protoc Protein Sci Chapter 5: t5−t6
[100]
Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M, Rao Z (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121: 1043−1057
[101]
Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N (2014) Crystal structure of the plant dual-afflnity nitrate transporter NRT1.1. Nature 507: 73−77
[102]
Sunley K, Butler M (2010) Strategies for the enhancement of recombinant protein production from mammalian cells by growth arrest. Biotechnol Adv 28: 385−394
[103]
Suzuki H, Nishizawa T, Tani K, Yamazaki Y, Tamura A, Ishitani R, Dohmae N, Tsukita S, Nureki O, Fujiyoshi Y (2014) Crystal structure of a claudin provides insight into the architecture of tight junctions. Science 344: 304−307
[104]
Tan Q, Zhu Y, Li J, Chen Z, Han GW, Kufareva I, Li T, Ma L, Fenalti G, Li J (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341: 1387−1390
[105]
Tao X, Avalos JL, Chen J, MacKinnon R (2009) Crystal structure of the eukaryotic strong inward-rectifler K+ channel Kir2.2 at 3.1 A resolution. Science 326: 1668−1674
[106]
Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R (2010) A gatingchargetransfer center in voltage sensors. Science 328: 67−73
[107]
Thomas P, Smart TG (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51: 187−200
[108]
Thompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E, Huang XP, Trapella C, Guerrini R, Calo G (2012) Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485: 395−399
[109]
Tornroth-Horsefleld S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439: 688−694
[110]
Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272: 1136−1144
[111]
Unger T, Peleg Y (2012) Recombinant protein expression in the baculovirus-infected insect cell system. Methods Mol Biol 800: 187−199
[112]
van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9: 112−124
[113]
Wacker D, Wang C, Katritch V, Han GW, Huang XP, Vardy E, McCorvy JD, Jiang Y, Chu M, Siu FY (2013) Structural features for functional selectivity at serotonin receptors. Science 340: 615−619
[114]
Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W, Huang XP, Vardy E (2013a) Structural basis for molecular recognition at serotonin receptors. Science 340: 610−614
[115]
Wang C, Wu H, Katritch V, Han GW, Huang XP, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC (2013b) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497: 338−343
[116]
Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454: 486−491
[117]
White JF, Noinaj N, Shibata Y, Love J, Kloss B, Xu F, Gvozdenovic-Jeremic J, Shah P, Shiloach J, Tate CG (2012) Structure of the agonist-bound neurotensin receptor. Nature 490: 508−513
[118]
Whorton MR, MacKinnon R (2011) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147: 199−208
[119]
Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330: 1066−1071
[120]
Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485: 327−332
[121]
Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344: 58−64
[122]
Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277: 60−66
[123]
Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel orai. Science 338 (6112): 1308−1313
[124]
Yang Y, Hu Z, Liu Z, Wang Y, Chen X, Chen G (2009) High human GLUT1, GLUT2, and GLUT3 expression in Schizosaccharomyces pombe. Biochemistry (Mosc) 74: 75−80
[125]
Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M (2007) Drugtarget network. Nat Biotechnol. 25: 1119−1126
[126]
Yurimoto H, Sakai Y (2009) Methanol-inducible gene expression and heterologous protein production in the methylotrophic yeast Candida boidinii. Biotechnol Appl Biochem 53: 85−92
[127]
Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE (2012) Highresolution crystal structure of human protease-activated receptor 1. Nature 492: 387−392
[128]
Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0. A resolution. Nature 414: 43−48
[129]
Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30: 1158−1170

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(259 KB)

Accesses

Citations

Detail

Sections
Recommended

/