RESEARCH ARTICLE

Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71

  • Minghao Dang 1 ,
  • Xiangxi Wang 1 ,
  • Quan Wang 3 ,
  • Yaxin Wang 1 ,
  • Jianping Lin 3 ,
  • Yuna Sun 1 ,
  • Xuemei Li 1 ,
  • Liguo Zhang 1 ,
  • Zhiyong Lou 2 ,
  • Junzhi Wang 4 ,
  • Zihe Rao , 1,2,3
Expand
  • 1. National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
  • 2. Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China
  • 3. School of Life Sciences, School of Pharmacy, Nankai University, Tianjin 300071, China
  • 4. National Institutes for Food and Drug Control, Beijing 100050, China

Received date: 24 Jun 2014

Accepted date: 26 Jun 2014

Published date: 25 Sep 2014

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Unlike the well-established picture for the entry of enveloped viruses, the mechanism of cellular entry of non-enveloped eukaryotic viruses remains largely mysterious. Picornaviruses are representative models for such viruses, and initiate this entry process by their functional receptors. Here we present the structural and functional studies of SCARB2, a functional receptor of the important human enterovirus 71 (EV71). SCARB2 is responsible for attachment as well as uncoating of EV71. Differences in the structures of SCARB2 under neutral and acidic conditions reveal that SCARB2 undergoes a pivotal pH-dependent conformational change which opens a lipid-transfer tunnel to mediate the expulsion of a hydrophobic pocket factor from the virion, a pre-requisite for uncoating. We have also identified the key residues essential for attachment to SCARB2, identifying the canyon region of EV71 as mediating the receptor interaction. Together these results provide a clear understanding of cellular attachment and initiation of uncoating for enteroviruses

Cite this article

Minghao Dang , Xiangxi Wang , Quan Wang , Yaxin Wang , Jianping Lin , Yuna Sun , Xuemei Li , Liguo Zhang , Zhiyong Lou , Junzhi Wang , Zihe Rao . Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71[J]. Protein & Cell, 2014 , 5(9) : 692 -703 . DOI: 10.1007/s13238-014-0087-3

1
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr66: 213-221

2
Arita M, Koike S, Aoki J, Horie H, Nomoto A (1998) Interaction of poliovirus with its purified receptor and conformational alteration in the virion. J Virol72: 3578-3586

3
Bergelson JM, Coyne CB (2013) Picornavirus entry. In: Viral entry into host cells. Springer, New York, pp 24-41

4
Chen P, Song Z, Qi Y, Feng X, Xu N, Sun Y, Wu X, Yao X, Mao Q, Li X (2012) Molecular determinants of enterovirus 71 viral entry cleft around Gln-172 on VP1 protein interacts with variable region on scavenge receptor B 2. J Biol Chem287: 6406-6420

5
Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh J-T, Bergelson JM (2001) The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA98: 15191-15196

6
Crowell RL, Philipson L (1971) Specific alterations of coxsackievirus B3 eluted from HeLa cells. J Virol8: 509-515

7
De Colibus L, Wang X, Spyrou JA, Kelly J, Ren J, Grimes J, Puerstinger G, Stonehouse N, Walter TS, Hu Z (2014) Morepowerful virus inhibitors from structure-based analysis of HEV71 capsid-binding molecules. Nat Struct Mol Biol21(3): 282-288

8
De Sena J, Mandel B (1977) Studies on the in vitro uncoating of poliovirus II. Characteristics of the membrane-modified particle. Virology78: 554-566

9
DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto

10
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr60: 2126-2132

11
Fricks CE, Hogle JM (1990) Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J Virol64: 1934-1945

12
Fry EE, Lea SM, Jackson T, Newman JW, Ellard FM, Blakemore WE, Abu-Ghazaleh R, Samuel A, King AM, Stuart DI (1999) The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J18: 543-554

13
Grant RA, Hiremath CN, Filman DJ, Syed R, Andries K, Hogle JM (1994) Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design. Curr Biol4: 784-797

14
Ho BK, Gruswitz F (2008) HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct Biol8: 49

15
Hogle JM (2002) Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu Rev Microbiol56: 677-702

16
Huang C-C, Liu C-C, Chang Y-C, Chen C-Y, Wang S-T, Yeh T-F (1999) Neurologic complications in children with enterovirus 71 infection. N Engl J Med341: 936-942

17
Iwata H, Hirasawa T, Roy P (1991) Complete nucleotide sequence of segment 5 of epizootic haemorrhagic disease virus; the outer capsid protein VP5 is homologous to the VP5 protein of bluetongue virus. Virus Res20: 273-281

18
Kim J-JP, Olson LJ, Dahms NM (2009) Carbohydrate recognition by the mannose-6-phosphate receptors. Curr Opin Struct Biol19: 534-542

19
Leong KLJ, Ng MM-L, Chu JJH (2011) The essential role of clathrinmediated endocytosis in the infectious entry of human enterovirus 71. J Biol Chem286: 309-321

20
Lin Y-W, Lin H-Y, Tsou Y-L, Chitra E, Hsiao K-N, Shao H-Y, Liu C-C, Sia C, Chong P, Chow Y-H (2012) Human SCARB2-mediated entry and endocytosis of EV71. PLoS ONE7: e30507

21
Lonberg-Holm K, Gosser LB, Kauer J (1975) Early alteration of poliovirus in infected cells and its specific inhibition. J Gen Virol27: 329-342

22
Lum L, Wong K, Lam S, Chua K, Goh A (1998) Neurogenic pulmonary oedema and enterovirus 71 encephalomyelitis. Lancet352: 1391

23
Marsh M, Helenius A (2006) Virus entry: open sesame. Cell124: 729-740

24
Mavridis L, Hudson BD, Ritchie DW (2007) Toward high throughput 3D virtual screening using spherical harmonic surface representations. J Chem Inf Model47: 1787-1796

25
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr40: 658-674

26
Neculai D, Schwake M, Ravichandran M, Zunke F, Collins RF, Peters J, Neculai M, Plumb J, Loppnau P, Pizarro JC (2013) Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature504: 172-176

27
Nishimura Y, Shimojima M, Tano Y, Miyamura T, Wakita T, Shimizu H (2009) Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med15: 794-797

28
Nishimura Y, Lee H, Hafenstein S, Kataoka C, Wakita T, Bergelson JM, Shimizu H (2013) Enterovirus 71 binding to PSGL-1 on leukocytes: VP1-145 acts as a molecular switch to control receptor interaction. PLoS Pathog9: e1003511

29
Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data. Methods Enzymol276: 307-326

30
Plevka P, Perera R, Cardosa J, Kuhn RJ, Rossmann MG (2012) Crystal structure of human enterovirus 71. Science336: 1274

31
Reczek D, Schwake M, Schröder J, Hughes H, Blanz J, Jin X, Brondyk W, Van Patten S, Edmunds T, Saftig P (2007) LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of β-glucocerebrosidase. Cell131: 770-783

32
Ren J, Wang X, Hu Z, Gao Q, Sun Y, Li X, Porta C, Walter TS, Gilbert RJ, Zhao Y (2013) Picornavirus uncoating intermediate captured in atomic detail. Nat Commun4: 1929

33
Rossmann MG, He Y, Kuhn RJ (2002) Picornavirus-receptor interactions. Trends Microbiol10: 324-331

34
Smith AE, Helenius A (2004) How viruses enter animal cells. Science304: 237-242

35
Smith TJ, Kremer MJ, Luo M, Vriend G, Arnold E, Kamer G, Rossmann MG, McKinlay MA, Diana GD, Otto MJ (1986) The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science233: 1286-1293

36
Sun Y, Wang X, Yuan S, Dang M, Li X, Zhang XC, Rao Z (2013) An open conformation determined by a structural switch for 2A protease from coxsackievirus A16. Protein Cell4: 782-792

37
Tan CW, Poh CL, Sam I-C, Chan YF (2013) Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J Virol87: 611-620

38
Tuthill TJ, Groppelli E, Hogle JM, Rowlands DJ (2010) Picornaviruses. In: Cell entry by non-enveloped viruses. Springer, New York, pp 43-89

39
Velayati A, DePaolo J, Gupta N, Choi JH, Moaven N, Westbroek W, Goker-Alpan O, Goldin E, Stubblefield BK, Kolodny E, Tayebi N, Sidransky E (2011) A mutation in SCARB2 is a modifier in Gaucher disease. Hum Mutat32: 1232-1238

40
Vlasak M, Goesler I, Blaas D (2005) Human rhinovirus type 89 variants use heparan sulfate proteoglycan for cell attachment. J Virol79: 5963-5970

41
Wang X, Peng W, Ren J, Hu Z, Xu J, Lou Z, Li X, Yin W, Shen X, Porta C (2012) A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat Struct Mol Biol19: 424-429

42
Wang Y, Qing J, Sun Y, Rao Z (2013) Suramin inhibits EV71 infection. Antiviral Res103: 1-6

43
Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, Koike S (2009) Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med15: 798-801

44
Yamayoshi S, Iizuka S, Yamashita T, Minagawa H, Mizuta K, Okamoto M, Nishimura H, Sanjoh K, Katsushima N, Itagaki T (2012) Human SCARB2-dependent infection by coxsackievirus A7, A14, and A16 and enterovirus 71. J Virol86: 5686-5696

45
Yamayoshi S, Ohka S, Fujii K, Koike S (2013) Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. J Virol87: 3335-3347

46
Yang B, Chuang H, Yang KD (2009) Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol J6: 141

47
Zachos C, Blanz J, Saftig P, Schwake M (2012) A critical histidine residue within LIMP-2 mediates pH sensitive binding to its ligand β-glucocerebrosidase. Traffic13: 1113-1123

48
Zhang P, Mueller S, Morais MC, Bator CM, Bowman VD, Hafenstein S, Wimmer E, Rossmann MG (2008) Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses. Proc Natl Acad Sci USA105: 18284-18289

Outlines

/