Regulation of the pentose phosphate pathway in cancer
Received date: 07 Apr 2014
Accepted date: 22 May 2014
Published date: 27 Aug 2014
Copyright
Energy metabolism is significantly reprogrammed in many human cancers, and these alterations confer many advantages to cancer cells, including the promotion of biosynthesis, ATP generation, detoxification and support of rapid proliferation. The pentose phosphate pathway (PPP) is a major pathway for glucose catabolism. The PPP directs glucose flux to its oxidative branch and produces a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), an essential reductant in anabolic processes. It has become clear that the PPP plays a critical role in regulating cancer cell growth by supplying cells with not only ribose-5-phosphate but also NADPH for detoxification of intracellular reactive oxygen species, reductive biosynthesis and ribose biogenesis. Thus, alteration of the PPP contributes directly to cell proliferation, survival and senescence. Furthermore, recent studies have shown that the PPP is regulated oncogenically and/or metabolically by numerous factors, including tumor suppressors, oncoproteins and intracellular metabolites. Dysregulation of PPP flux dramatically impacts cancer growth and survival. Therefore, a better understanding of how the PPP is reprogrammed and the mechanism underlying the balance between glycolysis and PPP flux in cancer will be valuable in developing therapeutic strategies targeting this pathway.
Key words: pentose phosphate pathway (PPP); G6PD; NADPH; glucose metabolism; cancer; cell Proliferation
Peng Jiang , Wenjing Du , Mian Wu . Regulation of the pentose phosphate pathway in cancer[J]. Protein & Cell, 2014 , 5(8) : 592 -602 . DOI: 10.1007/s13238-014-0082-8
1 |
Amelio I, Markert EK, Ruflni A, Antonov AV, Sayan BS, Tucci P, Agostini M, Mineo TC, Levine AJ, Melino G(2013) p73 regulates serine biosynthesis in cancer. Oncogene
|
2 |
Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS
|
3 |
Bader AG, Kang S, Zhao L, Vogt PK(2005) Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer5: 921-929
|
4 |
Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH(2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell126: 107-120
|
5 |
Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH(2013) Metabolic regulation by p53 family members. Cell Metab18: 617-633
|
6 |
Bleeker FE, Atai NA, Lamba S, Jonker A, Rijkeboer D, Bosch KS, Tigchelaar W, Troost D, Vandertop WP, Bardelli A
|
7 |
Bonneau D, Longy M(2000) Mutations of the human PTEN gene. Hum Mutat16: 109-122
|
8 |
Cairns RA, Harris IS, Mak TW(2011) Regulation of cancer cell metabolism. Nat Rev Cancer11: 85-95
|
9 |
Candi E, Agostini M, Melino G, Bernassola F(2014) How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat35: 702-714
|
10 |
Cantley LC(2002) The phosphoinositide 3-kinase pathway. Science296: 1655-1657
|
11 |
Cantley LC, Neel BG(1999) Newinsights into tumor suppression:PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA96: 4240-4245
|
12 |
Cheung EC, Athineos D, Lee P, Ridgway RA, Lambie W, Nixon C, Strathdee D, Blyth K, Sansom OJ, Vousden KH(2013) TIGAR is required for efflcient intestinal regeneration and tumorigenesis. Dev Cell25: 463-477
|
13 |
Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q, Bertoni F, Ponzoni M, Scandurra M, Califano A
|
14 |
Cosentino C, Grieco D, Costanzo V(2011) ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J30: 546-555
|
15 |
Costa Rosa LF, Curi R, Murphy C, Newsholme P(1995) Effect of adrenaline and phorbol myristate acetate or bacterial lipopolysaccharide on stimulation of pathways of macrophage glucose, glutamine and O2 metabolism. Evidence for cyclic AMP-dependent protein kinase mediated inhibition of glucose-6-phosphate dehydrogenase and activation of NADP+-dependent ‘malic’ enzyme. Biochem J310(Pt 2): 709-714
|
16 |
da Silva CG, Jarzyna R, Specht A, Kaczmarek E(2006) Extracellular nucleotides and adenosine independently activate AMPactivated protein kinase in endothelial cells: involvement of P2 receptors and adenosine transporters. Circ Res98: e39-e47
|
17 |
Dang CV(2012) MYC on the path to cancer. Cell149: 22-35
|
18 |
Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC
|
19 |
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB(2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab7: 11-20
|
20 |
Du W, Jiang P, Mancuso A, Stonestrom A, Brewer MD, Minn AJ, Mak TW, Wu M, Yang X(2013) TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol15: 991-1000
|
21 |
Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S
|
22 |
Engelman JA(2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer9: 550-562
|
23 |
Engelman JA, Luo J, Cantley LC(2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet7: 606-619
|
24 |
Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B
|
25 |
Fets L, Anastasiou D(2013) p73 keeps metabolic control in the family. Nat Cell Biol15: 891-893
|
26 |
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT
|
27 |
Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C, de Boer VC, Anastasiou D, Ito K, Sasaki AT, Rameh L
|
28 |
Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA(2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev20: 1218-1249
|
29 |
Hong X, Song R, Song H, Zheng T, Wang J, Liang Y, Qi S, Lu Z, Song X, Jiang H
|
30 |
Hsu PP, Sabatini DM(2008) Cancer cell metabolism: Warburg and beyond. Cell134: 703-707
|
31 |
Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z(2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA107: 7455-7460
|
32 |
Huang W, Choi W, Chen Y, Zhang Q, Deng H, He W, Shi Y(2013) A proposed role for glutamine in cancer cell growth through acid resistance. Cell Res23: 724-727
|
33 |
Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X(2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol13: 310-316
|
34 |
Jiang P, Du W, Mancuso A, Wellen KE, Yang X(2013a) Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature493: 689-693
|
35 |
Jiang P, Du W, Yang X(2013b) A critical role of glucose-6-phosphate dehydrogenase in TAp73-mediated cell proliferation. Cell Cycle12: 3720-3726
|
36 |
Jiang P, Du W, Yang X(2013c) p53 and regulation of tumor metabolism. J Carcinog12: 21
|
37 |
Jones NP, Schulze A(2012) Targeting cancer metabolism—aiming at a tumour’s sweet-spot. Drug Discov Today17: 232-241
|
38 |
Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB(2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell18: 283-293
|
39 |
Kletzien RF, Harris PK, Foellmi LA(1994) Glucose-6-phosphate dehydrogenase: a “housekeeping” enzyme subject to tissuespeciflc regulation by hormones, nutrients, and oxidant stress. FASEB J8: 174-181
|
40 |
Kohan AB, Talukdar I, Walsh CM, Salati LM(2009) A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids. BiochemBiophys Res Commun388: 117-121
|
41 |
Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D(2005) Glycolytic enzymes can modulate cellular life span. Cancer Res65: 177-185
|
42 |
Koppenol WH, Bounds PL, Dang CV(2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer11: 325-337
|
43 |
Kroemer G, Pouyssegur J(2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell13: 472-482
|
44 |
Kuo W, Lin J, Tang TK(2000) Human glucose-6-phosphate dehydrogenase (G6PD) gene transforms NIH 3T3 cells and induces tumors in nude mice. Int J Cancer85: 857-864
|
45 |
Langbein S, Frederiks WM, zur Hausen A, Popa J, Lehmann J, Weiss C, Alken P, Coy JF(2008) Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer. Int J Cancer122: 2422-2428
|
46 |
Leopold JA, Dam A, Maron BA, Scribner AW, Liao R, Handy DE, Stanton RC, Pitt B, Loscalzo J(2007) Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat Med13: 189-197
|
47 |
Liang Y, Liu J, Feng Z(2013) The regulation of cellular metabolism by tumor suppressor p53. Cell Biosci3: 9
|
48 |
Longo L, Vanegas OC, Patel M, Rosti V, Li H, Waka J, Merghoub T, Pandolfl PP, Notaro R, Manova K
|
49 |
Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol27: 441-464
|
50 |
Maehama T, Dixon JE(1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem273: 13375-13378
|
51 |
Manganelli G, Masullo U, Passarelli S, Filosa S(2013) Glucose-6-phosphate dehydrogenase deflciency: disadvantages and possible beneflts. Cardiovasc Hematol Disord Drug Targets13: 73-82
|
52 |
Manning BD, Cantley LC(2007) AKT/PKB signaling: navigating downstream. Cell129: 1261-1274
|
53 |
Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM(2006) p53 regulates mitochondrial respiration. Science312: 1650-1653
|
54 |
Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL
|
55 |
Quade BJ, Wang TY, Sornberger K, Dal Cin P, Mutter GL, Morton CC(2004) Molecular pathogenesis of uterine smooth muscle tumors fromtranscriptional proflling. Genes Chromosom Cancer40: 97-108
|
56 |
Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Gascoyne RD, Muller-Hermelink HK, Smeland EB, Giltnane JM
|
57 |
Ruflni A, Niklison-Chirou MV, Inoue S, Tomasini R, Harris IS, Marino A, Federici M, Dinsdale D, Knight RA, Melino G
|
58 |
Sandulache VC, Ow TJ, Pickering CR, Frederick MJ, Zhou G, Fokt I, Davis-Malesevich M, Priebe W, Myers JN(2011) Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells. Cancer117: 2926-2938
|
59 |
Schulz E, Anter E, Zou MH, Keaney JF Jr (2005) Estradiol-mediated endothelial nitric oxide synthase association with heat shock protein 90 requires adenosine monophosphate-dependent protein kinase. Circulation111: 3473-3480
|
60 |
Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E(2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res64: 2627-2633
|
61 |
Shaw RJ, Cantley LC(2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature441: 424-430
|
62 |
Shen L, Sun X, Fu Z, Yang G, Li J, Yao L(2012) The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clin Cancer Res18: 1561-1567
|
63 |
Simpson L, Parsons R(2001) PTEN: life as a tumor suppressor. Exp Cell Res264: 29-41
|
64 |
Stahmann N, Woods A, Carling D, Heller R(2006) Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase beta. Mol Cell Biol26: 5933-5945
|
65 |
Stanton RC(2012) Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life64: 362-369
|
66 |
Stearman RS, Dwyer-Nield L, Zerbe L, Blaine SA, Chan Z, Bunn PA Jr, Johnson GL, Hirsch FR, Merrick DT, Franklin WA
|
67 |
Su LJ, Chang CW, Wu YC, Chen KC, Lin CJ, Liang SC, Lin CH, Whang-Peng J, Hsu SL, Chen CH
|
68 |
Sun W, Lee TS, Zhu M, Gu C, Wang Y, Zhu Y, Shyy JY(2006) Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation114: 2655-2662
|
69 |
Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y
|
70 |
Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X, Stanton RC(1998) Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem273: 10609-10617
|
71 |
Towler MC, Hardie DG(2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res100: 328-341
|
72 |
Vander Heiden MG, Cantley LC, Thompson CB(2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science324: 1029-1033
|
73 |
Varshney R, Dwarakanath B, Jain V(2005) Radiosensitization by 6-aminonicotinamide and 2-deoxy-D-glucose in human cancer cells. Int J Radiat Biol81: 397-408
|
74 |
Wagle A, Jivraj S, Garlock GL, Stapleton SR(1998) Insulin regulation of glucose-6-phosphate dehydrogenase gene expression is rapamycin-sensitive and requires phosphatidylinositol 3-kinase. J Biol Chem273: 14968-14974
|
75 |
Warburg O(1956) On the origin of cancer cells. Science123: 309-314
|
76 |
Warburg O, Posener K, Negelein E(1924) Ueber den Stoffwechsel der Tumoren. Biochem Z152: 319-344
|
77 |
Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE
|
78 |
Ward PS, Cross JR, Lu C, Weigert O, Abel-Wahab O, Levine RL, Weinstock DM, Sharp KA, Thompson CB(2012) Identiflcation of additional IDH mutations associated with oncometabolite R(-)-2-hydroxyglutarate production. Oncogene31: 2491-2498
|
79 |
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB
|
80 |
Wood T(1986) Physiological functions of the pentose phosphate pathway. Cell Biochem Funct4: 241-247
|
81 |
Xu Y, Osborne BW, Stanton RC(2005) Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. Am J Physiol Renal Physiol289: F1040-F1047
|
82 |
Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ
|
83 |
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL
|
84 |
Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y(2007) Deflciency in glutamine but not glucose induces MYCdependent apoptosis in human cells. J Cell Biol178: 93-105
|
85 |
Zhang Z, Apse K, Pang J, Stanton RC(2000) High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J Biol Chem275: 40042-40047
|
86 |
Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y
|
87 |
Zmijewski JW, Banerjee S, Bae H, Friggeri A, Lazarowski ER, Abraham E(2010) Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J Biol Chem285: 33154-33164
|
88 |
Zoncu R, Efeyan A, Sabatini DM(2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol12: 21-35
|
89 |
Zou MH, Hou XY, Shi CM, Kirkpatick S, Liu F, Goldman MH, Cohen RA(2003) Activation of 5’-AMP-activated kinase is mediated through c-Src and phosphoinositide 3-kinase activity during hypoxia-reoxygenation of bovine aortic endothelial cells. Role of peroxynitrite. J Biol Chem278: 34003-34010
|
/
〈 | 〉 |