Regulation of the pentose phosphate pathway in cancer
Peng Jiang, Wenjing Du, Mian Wu
Regulation of the pentose phosphate pathway in cancer
Energy metabolism is significantly reprogrammed in many human cancers, and these alterations confer many advantages to cancer cells, including the promotion of biosynthesis, ATP generation, detoxification and support of rapid proliferation. The pentose phosphate pathway (PPP) is a major pathway for glucose catabolism. The PPP directs glucose flux to its oxidative branch and produces a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), an essential reductant in anabolic processes. It has become clear that the PPP plays a critical role in regulating cancer cell growth by supplying cells with not only ribose-5-phosphate but also NADPH for detoxification of intracellular reactive oxygen species, reductive biosynthesis and ribose biogenesis. Thus, alteration of the PPP contributes directly to cell proliferation, survival and senescence. Furthermore, recent studies have shown that the PPP is regulated oncogenically and/or metabolically by numerous factors, including tumor suppressors, oncoproteins and intracellular metabolites. Dysregulation of PPP flux dramatically impacts cancer growth and survival. Therefore, a better understanding of how the PPP is reprogrammed and the mechanism underlying the balance between glycolysis and PPP flux in cancer will be valuable in developing therapeutic strategies targeting this pathway.
pentose phosphate pathway (PPP) / G6PD / NADPH / glucose metabolism / cancer / cell Proliferation
[1] |
Amelio I, Markert EK, Ruflni A, Antonov AV, Sayan BS, Tucci P, Agostini M, Mineo TC, Levine AJ, Melino G(2013) p73 regulates serine biosynthesis in cancer. Oncogene
CrossRef
Google scholar
|
[2] |
Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS
CrossRef
Google scholar
|
[3] |
Bader AG, Kang S, Zhao L, Vogt PK(2005) Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer5: 921-929
CrossRef
Google scholar
|
[4] |
Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH(2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell126: 107-120
CrossRef
Google scholar
|
[5] |
Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH(2013) Metabolic regulation by p53 family members. Cell Metab18: 617-633
CrossRef
Google scholar
|
[6] |
Bleeker FE, Atai NA, Lamba S, Jonker A, Rijkeboer D, Bosch KS, Tigchelaar W, Troost D, Vandertop WP, Bardelli A
CrossRef
Google scholar
|
[7] |
Bonneau D, Longy M(2000) Mutations of the human PTEN gene. Hum Mutat16: 109-122
CrossRef
Google scholar
|
[8] |
Cairns RA, Harris IS, Mak TW(2011) Regulation of cancer cell metabolism. Nat Rev Cancer11: 85-95
CrossRef
Google scholar
|
[9] |
Candi E, Agostini M, Melino G, Bernassola F(2014) How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat35: 702-714
CrossRef
Google scholar
|
[10] |
Cantley LC(2002) The phosphoinositide 3-kinase pathway. Science296: 1655-1657
CrossRef
Google scholar
|
[11] |
Cantley LC, Neel BG(1999) Newinsights into tumor suppression:PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA96: 4240-4245
CrossRef
Google scholar
|
[12] |
Cheung EC, Athineos D, Lee P, Ridgway RA, Lambie W, Nixon C, Strathdee D, Blyth K, Sansom OJ, Vousden KH(2013) TIGAR is required for efflcient intestinal regeneration and tumorigenesis. Dev Cell25: 463-477
CrossRef
Google scholar
|
[13] |
Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q, Bertoni F, Ponzoni M, Scandurra M, Califano A
CrossRef
Google scholar
|
[14] |
Cosentino C, Grieco D, Costanzo V(2011) ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J30: 546-555
CrossRef
Google scholar
|
[15] |
Costa Rosa LF, Curi R, Murphy C, Newsholme P(1995) Effect of adrenaline and phorbol myristate acetate or bacterial lipopolysaccharide on stimulation of pathways of macrophage glucose, glutamine and O2 metabolism. Evidence for cyclic AMP-dependent protein kinase mediated inhibition of glucose-6-phosphate dehydrogenase and activation of NADP+-dependent ‘malic’ enzyme. Biochem J310(Pt 2): 709-714
|
[16] |
da Silva CG, Jarzyna R, Specht A, Kaczmarek E(2006) Extracellular nucleotides and adenosine independently activate AMPactivated protein kinase in endothelial cells: involvement of P2 receptors and adenosine transporters. Circ Res98: e39-e47
CrossRef
Google scholar
|
[17] |
Dang CV(2012) MYC on the path to cancer. Cell149: 22-35
CrossRef
Google scholar
|
[18] |
Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC
CrossRef
Google scholar
|
[19] |
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB(2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab7: 11-20
CrossRef
Google scholar
|
[20] |
Du W, Jiang P, Mancuso A, Stonestrom A, Brewer MD, Minn AJ, Mak TW, Wu M, Yang X(2013) TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol15: 991-1000
CrossRef
Google scholar
|
[21] |
Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S
CrossRef
Google scholar
|
[22] |
Engelman JA(2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer9: 550-562
CrossRef
Google scholar
|
[23] |
Engelman JA, Luo J, Cantley LC(2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet7: 606-619
CrossRef
Google scholar
|
[24] |
Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B
CrossRef
Google scholar
|
[25] |
Fets L, Anastasiou D(2013) p73 keeps metabolic control in the family. Nat Cell Biol15: 891-893
CrossRef
Google scholar
|
[26] |
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT
CrossRef
Google scholar
|
[27] |
Garcia-Cao I, Song MS, Hobbs RM, Laurent G, Giorgi C, de Boer VC, Anastasiou D, Ito K, Sasaki AT, Rameh L
CrossRef
Google scholar
|
[28] |
Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA(2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev20: 1218-1249
CrossRef
Google scholar
|
[29] |
Hong X, Song R, Song H, Zheng T, Wang J, Liang Y, Qi S, Lu Z, Song X, Jiang H
|
[30] |
Hsu PP, Sabatini DM(2008) Cancer cell metabolism: Warburg and beyond. Cell134: 703-707
CrossRef
Google scholar
|
[31] |
Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z(2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA107: 7455-7460
CrossRef
Google scholar
|
[32] |
Huang W, Choi W, Chen Y, Zhang Q, Deng H, He W, Shi Y(2013) A proposed role for glutamine in cancer cell growth through acid resistance. Cell Res23: 724-727
CrossRef
Google scholar
|
[33] |
Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X(2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol13: 310-316
CrossRef
Google scholar
|
[34] |
Jiang P, Du W, Mancuso A, Wellen KE, Yang X(2013a) Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature493: 689-693
CrossRef
Google scholar
|
[35] |
Jiang P, Du W, Yang X(2013b) A critical role of glucose-6-phosphate dehydrogenase in TAp73-mediated cell proliferation. Cell Cycle12: 3720-3726
CrossRef
Google scholar
|
[36] |
Jiang P, Du W, Yang X(2013c) p53 and regulation of tumor metabolism. J Carcinog12: 21
CrossRef
Google scholar
|
[37] |
Jones NP, Schulze A(2012) Targeting cancer metabolism—aiming at a tumour’s sweet-spot. Drug Discov Today17: 232-241
CrossRef
Google scholar
|
[38] |
Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB(2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell18: 283-293
CrossRef
Google scholar
|
[39] |
Kletzien RF, Harris PK, Foellmi LA(1994) Glucose-6-phosphate dehydrogenase: a “housekeeping” enzyme subject to tissuespeciflc regulation by hormones, nutrients, and oxidant stress. FASEB J8: 174-181
|
[40] |
Kohan AB, Talukdar I, Walsh CM, Salati LM(2009) A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids. BiochemBiophys Res Commun388: 117-121
CrossRef
Google scholar
|
[41] |
Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D(2005) Glycolytic enzymes can modulate cellular life span. Cancer Res65: 177-185
|
[42] |
Koppenol WH, Bounds PL, Dang CV(2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer11: 325-337
CrossRef
Google scholar
|
[43] |
Kroemer G, Pouyssegur J(2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell13: 472-482
CrossRef
Google scholar
|
[44] |
Kuo W, Lin J, Tang TK(2000) Human glucose-6-phosphate dehydrogenase (G6PD) gene transforms NIH 3T3 cells and induces tumors in nude mice. Int J Cancer85: 857-864
CrossRef
Google scholar
|
[45] |
Langbein S, Frederiks WM, zur Hausen A, Popa J, Lehmann J, Weiss C, Alken P, Coy JF(2008) Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer. Int J Cancer122: 2422-2428
CrossRef
Google scholar
|
[46] |
Leopold JA, Dam A, Maron BA, Scribner AW, Liao R, Handy DE, Stanton RC, Pitt B, Loscalzo J(2007) Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat Med13: 189-197
CrossRef
Google scholar
|
[47] |
Liang Y, Liu J, Feng Z(2013) The regulation of cellular metabolism by tumor suppressor p53. Cell Biosci3: 9
CrossRef
Google scholar
|
[48] |
Longo L, Vanegas OC, Patel M, Rosti V, Li H, Waka J, Merghoub T, Pandolfl PP, Notaro R, Manova K
CrossRef
Google scholar
|
[49] |
Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol27: 441-464
CrossRef
Google scholar
|
[50] |
Maehama T, Dixon JE(1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem273: 13375-13378
CrossRef
Google scholar
|
[51] |
Manganelli G, Masullo U, Passarelli S, Filosa S(2013) Glucose-6-phosphate dehydrogenase deflciency: disadvantages and possible beneflts. Cardiovasc Hematol Disord Drug Targets13: 73-82
CrossRef
Google scholar
|
[52] |
Manning BD, Cantley LC(2007) AKT/PKB signaling: navigating downstream. Cell129: 1261-1274
CrossRef
Google scholar
|
[53] |
Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM(2006) p53 regulates mitochondrial respiration. Science312: 1650-1653
CrossRef
Google scholar
|
[54] |
Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL
CrossRef
Google scholar
|
[55] |
Quade BJ, Wang TY, Sornberger K, Dal Cin P, Mutter GL, Morton CC(2004) Molecular pathogenesis of uterine smooth muscle tumors fromtranscriptional proflling. Genes Chromosom Cancer40: 97-108
CrossRef
Google scholar
|
[56] |
Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Gascoyne RD, Muller-Hermelink HK, Smeland EB, Giltnane JM
CrossRef
Google scholar
|
[57] |
Ruflni A, Niklison-Chirou MV, Inoue S, Tomasini R, Harris IS, Marino A, Federici M, Dinsdale D, Knight RA, Melino G
CrossRef
Google scholar
|
[58] |
Sandulache VC, Ow TJ, Pickering CR, Frederick MJ, Zhou G, Fokt I, Davis-Malesevich M, Priebe W, Myers JN(2011) Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells. Cancer117: 2926-2938
CrossRef
Google scholar
|
[59] |
Schulz E, Anter E, Zou MH, Keaney JF Jr (2005) Estradiol-mediated endothelial nitric oxide synthase association with heat shock protein 90 requires adenosine monophosphate-dependent protein kinase. Circulation111: 3473-3480
CrossRef
Google scholar
|
[60] |
Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E(2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res64: 2627-2633
CrossRef
Google scholar
|
[61] |
Shaw RJ, Cantley LC(2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature441: 424-430
CrossRef
Google scholar
|
[62] |
Shen L, Sun X, Fu Z, Yang G, Li J, Yao L(2012) The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clin Cancer Res18: 1561-1567
CrossRef
Google scholar
|
[63] |
Simpson L, Parsons R(2001) PTEN: life as a tumor suppressor. Exp Cell Res264: 29-41
CrossRef
Google scholar
|
[64] |
Stahmann N, Woods A, Carling D, Heller R(2006) Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase beta. Mol Cell Biol26: 5933-5945
CrossRef
Google scholar
|
[65] |
Stanton RC(2012) Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life64: 362-369
CrossRef
Google scholar
|
[66] |
Stearman RS, Dwyer-Nield L, Zerbe L, Blaine SA, Chan Z, Bunn PA Jr, Johnson GL, Hirsch FR, Merrick DT, Franklin WA
CrossRef
Google scholar
|
[67] |
Su LJ, Chang CW, Wu YC, Chen KC, Lin CJ, Liang SC, Lin CH, Whang-Peng J, Hsu SL, Chen CH
CrossRef
Google scholar
|
[68] |
Sun W, Lee TS, Zhu M, Gu C, Wang Y, Zhu Y, Shyy JY(2006) Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation114: 2655-2662
CrossRef
Google scholar
|
[69] |
Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y
CrossRef
Google scholar
|
[70] |
Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X, Stanton RC(1998) Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem273: 10609-10617
CrossRef
Google scholar
|
[71] |
Towler MC, Hardie DG(2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res100: 328-341
CrossRef
Google scholar
|
[72] |
Vander Heiden MG, Cantley LC, Thompson CB(2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science324: 1029-1033
CrossRef
Google scholar
|
[73] |
Varshney R, Dwarakanath B, Jain V(2005) Radiosensitization by 6-aminonicotinamide and 2-deoxy-D-glucose in human cancer cells. Int J Radiat Biol81: 397-408
CrossRef
Google scholar
|
[74] |
Wagle A, Jivraj S, Garlock GL, Stapleton SR(1998) Insulin regulation of glucose-6-phosphate dehydrogenase gene expression is rapamycin-sensitive and requires phosphatidylinositol 3-kinase. J Biol Chem273: 14968-14974
CrossRef
Google scholar
|
[75] |
Warburg O(1956) On the origin of cancer cells. Science123: 309-314
CrossRef
Google scholar
|
[76] |
Warburg O, Posener K, Negelein E(1924) Ueber den Stoffwechsel der Tumoren. Biochem Z152: 319-344
|
[77] |
Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE
CrossRef
Google scholar
|
[78] |
Ward PS, Cross JR, Lu C, Weigert O, Abel-Wahab O, Levine RL, Weinstock DM, Sharp KA, Thompson CB(2012) Identiflcation of additional IDH mutations associated with oncometabolite R(-)-2-hydroxyglutarate production. Oncogene31: 2491-2498
CrossRef
Google scholar
|
[79] |
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB
CrossRef
Google scholar
|
[80] |
Wood T(1986) Physiological functions of the pentose phosphate pathway. Cell Biochem Funct4: 241-247
CrossRef
Google scholar
|
[81] |
Xu Y, Osborne BW, Stanton RC(2005) Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. Am J Physiol Renal Physiol289: F1040-F1047
CrossRef
Google scholar
|
[82] |
Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ
CrossRef
Google scholar
|
[83] |
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL
CrossRef
Google scholar
|
[84] |
Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y(2007) Deflciency in glutamine but not glucose induces MYCdependent apoptosis in human cells. J Cell Biol178: 93-105
CrossRef
Google scholar
|
[85] |
Zhang Z, Apse K, Pang J, Stanton RC(2000) High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J Biol Chem275: 40042-40047
CrossRef
Google scholar
|
[86] |
Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y
CrossRef
Google scholar
|
[87] |
Zmijewski JW, Banerjee S, Bae H, Friggeri A, Lazarowski ER, Abraham E(2010) Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J Biol Chem285: 33154-33164
CrossRef
Google scholar
|
[88] |
Zoncu R, Efeyan A, Sabatini DM(2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol12: 21-35
CrossRef
Google scholar
|
[89] |
Zou MH, Hou XY, Shi CM, Kirkpatick S, Liu F, Goldman MH, Cohen RA(2003) Activation of 5’-AMP-activated kinase is mediated through c-Src and phosphoinositide 3-kinase activity during hypoxia-reoxygenation of bovine aortic endothelial cells. Role of peroxynitrite. J Biol Chem278: 34003-34010
CrossRef
Google scholar
|
/
〈 | 〉 |