New insights into the helical structure of 30-nm chromatin fibers
Published date: 31 Jul 2014
Copyright
Ping Chen , Ping Zhu , Guohong Li . New insights into the helical structure of 30-nm chromatin fibers[J]. Protein & Cell, 2014 , 5(7) : 489 -491 . DOI: 10.1007/s13238-014-0080-x
1 |
Allan J, Hartman PG, Crane-Robinson C, Aviles FX (1980) The structure of histone H1 and its location in chromatin. Nature 288: 675-679
|
2 |
Bates DL, Thomas JO (1981) Histones H1 and H5: one or two molecules per nucleosome? Nucleic Acids Res9: 5883-5894
|
3 |
Dorigo B, Schalch T, Kulangara A, Duda S, Schroeder RR, Richmond TJ (2004) Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science306: 1571-1573
|
4 |
Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci USA73: 1897-1901
|
5 |
Gerchman SE, Ramakrishnan V (1987) Chromatin higher-order structure studied by neutron scattering and scanning transmission electron microscopy. Proc Natl Acad Sci USA84: 7802-7806
|
6 |
Ghirlando R, Felsenfeld G (2008) Hydrodynamic studies on defined heterochromatin fragments support a 30-nm fiber having six nucleosomes per turn. J Mol Biol376: 1417-1425
|
7 |
Langmore JP, Paulson JR (1983) Low angle X-ray diffraction studies of chromatin structure in vivo and in isolated nuclei and metaphase chromosomes. J Cell Biol96: 1120-1131
|
8 |
Li G, Reinberg D (2011) Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev21: 175-186
|
9 |
Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Åresolution. Nature389: 251-260
|
10 |
Maeshima K, Hihara S, Eltsov M (2010) Chromatin structure: does the 30-nm fibre exist in vivo? Curr Opin Cell Biol22: 291-297
|
11 |
Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet11: 285-296
|
12 |
Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ3rd, Voigt P, Martin SR, Taylor WR, De Marco V
|
13 |
Martin C, Cao R, Zhang Y (2006) Substrate preferences of the EZH2 histone methyltransferase complex. J Biol Chem281: 8365-8370
|
14 |
Robinson PJ, Rhodes D (2006) Structure of the ‘30 nm’ chromatin fibre: a key role for the linker histone. Curr Opin Struct Biol16: 336-343
|
15 |
Schalch T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature436: 138-141
|
16 |
Song F, Chen P, Sun D, Wang M, Dong L, Liang D, Xu RM, Zhu P, Li G (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science344: 376-380
|
17 |
Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol83: 403-427
|
18 |
Thomas JO (1999) Histone H1: location and role. Curr Opin Cell Biol11: 312-317
|
19 |
Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature171: 737-738
|
20 |
Widom J, Klug A (1985) Structure of the 300A chromatin filament: X-ray diffraction from oriented samples. Cell43: 207-213
|
21 |
Williams SP, Athey BD, Muglia LJ, Schappe RS, Gough AH, Langmore JP (1986) Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys J49: 233-248
|
22 |
Woodcock CL, Frado LL, Rattner JB (1984) The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol99: 42-52
|
23 |
Yuan W, Wu T, Fu H, Dai C, Wu H, Liu N, Li X, Xu M, Zhang Z, Niu T
|
/
〈 | 〉 |