New insights into the helical structure of 30-nm chromatin fibers

Ping Chen, Ping Zhu, Guohong Li

PDF(314 KB)
PDF(314 KB)
Protein Cell ›› 2014, Vol. 5 ›› Issue (7) : 489-491. DOI: 10.1007/s13238-014-0080-x
NEWS AND VIEWS
NEWS AND VIEWS

New insights into the helical structure of 30-nm chromatin fibers

Author information +
History +

Cite this article

Download citation ▾
Ping Chen, Ping Zhu, Guohong Li. New insights into the helical structure of 30-nm chromatin fibers. Protein Cell, 2014, 5(7): 489‒491 https://doi.org/10.1007/s13238-014-0080-x

References

[1]
Allan J, Hartman PG, Crane-Robinson C, Aviles FX (1980) The structure of histone H1 and its location in chromatin. Nature 288: 675-679
CrossRef Google scholar
[2]
Bates DL, Thomas JO (1981) Histones H1 and H5: one or two molecules per nucleosome? Nucleic Acids Res9: 5883-5894
CrossRef Google scholar
[3]
Dorigo B, Schalch T, Kulangara A, Duda S, Schroeder RR, Richmond TJ (2004) Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science306: 1571-1573
CrossRef Google scholar
[4]
Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci USA73: 1897-1901
CrossRef Google scholar
[5]
Gerchman SE, Ramakrishnan V (1987) Chromatin higher-order structure studied by neutron scattering and scanning transmission electron microscopy. Proc Natl Acad Sci USA84: 7802-7806
CrossRef Google scholar
[6]
Ghirlando R, Felsenfeld G (2008) Hydrodynamic studies on defined heterochromatin fragments support a 30-nm fiber having six nucleosomes per turn. J Mol Biol376: 1417-1425
CrossRef Google scholar
[7]
Langmore JP, Paulson JR (1983) Low angle X-ray diffraction studies of chromatin structure in vivo and in isolated nuclei and metaphase chromosomes. J Cell Biol96: 1120-1131
CrossRef Google scholar
[8]
Li G, Reinberg D (2011) Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev21: 175-186
CrossRef Google scholar
[9]
Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Åresolution. Nature389: 251-260
CrossRef Google scholar
[10]
Maeshima K, Hihara S, Eltsov M (2010) Chromatin structure: does the 30-nm fibre exist in vivo? Curr Opin Cell Biol22: 291-297
CrossRef Google scholar
[11]
Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet11: 285-296
CrossRef Google scholar
[12]
Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ3rd, Voigt P, Martin SR, Taylor WR, De Marco V (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature461: 762-767
CrossRef Google scholar
[13]
Martin C, Cao R, Zhang Y (2006) Substrate preferences of the EZH2 histone methyltransferase complex. J Biol Chem281: 8365-8370
CrossRef Google scholar
[14]
Robinson PJ, Rhodes D (2006) Structure of the ‘30 nm’ chromatin fibre: a key role for the linker histone. Curr Opin Struct Biol16: 336-343
CrossRef Google scholar
[15]
Schalch T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature436: 138-141
CrossRef Google scholar
[16]
Song F, Chen P, Sun D, Wang M, Dong L, Liang D, Xu RM, Zhu P, Li G (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science344: 376-380
CrossRef Google scholar
[17]
Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol83: 403-427
CrossRef Google scholar
[18]
Thomas JO (1999) Histone H1: location and role. Curr Opin Cell Biol11: 312-317
CrossRef Google scholar
[19]
Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature171: 737-738
CrossRef Google scholar
[20]
Widom J, Klug A (1985) Structure of the 300A chromatin filament: X-ray diffraction from oriented samples. Cell43: 207-213
CrossRef Google scholar
[21]
Williams SP, Athey BD, Muglia LJ, Schappe RS, Gough AH, Langmore JP (1986) Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys J49: 233-248
CrossRef Google scholar
[22]
Woodcock CL, Frado LL, Rattner JB (1984) The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol99: 42-52
CrossRef Google scholar
[23]
Yuan W, Wu T, Fu H, Dai C, Wu H, Liu N, Li X, Xu M, Zhang Z, Niu T (2012) Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science337: 971-975
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AI Summary AI Mindmap
PDF(314 KB)

Accesses

Citations

Detail

Sections
Recommended

/