Genome-wide investigation of transcription factor footprints and dynamics using cFOOT-seq

Heng Wang , Ang Wu , Meng-Chen Yang , Di Zhou , Xiyang Chen , Zhifei Shi , Yiqun Zhang , Yu-Xin Liu , Kai Chen , Xiaosong Wang , Xiao-Fang Cheng , Baodan He , Yutao Fu , Lan Kang , Yujun Hou , Kun Chen , Shan Bian , Juan Tang , Jianhuang Xue , Chenfei Wang , Xiaoyu Liu , Jiejun Shi , Shaorong Gao , Jia-Min Zhang

Protein Cell ›› 2025, Vol. 16 ›› Issue (11) : 932 -952.

PDF (4219KB)
Protein Cell ›› 2025, Vol. 16 ›› Issue (11) : 932 -952. DOI: 10.1093/procel/pwaf071
RESEARCH ARTICLE

Genome-wide investigation of transcription factor footprints and dynamics using cFOOT-seq

Author information +
History +
PDF (4219KB)

Abstract

Gene regulation relies on the precise binding of transcription factors (TFs) at regulatory elements, but simultaneously detecting hundreds of TFs on chromatin is challenging. We developed cFOOT-seq, a cytosine deaminase-based TF footprinting assay, for high-resolution, quantitative genome-wide assessment of TF binding in both open and closed chromatin regions, even with small cell numbers. By utilizing the dsDNA deaminase SsdAtox, cFOOT-seq converts accessible cytosines to uracil while preserving genomic integrity, making it compatible with techniques like ATAC-seq for sensitive and cost-effective detection of TF occupancy at the single-molecule and single-cell level. Our approach enables the delineation of TF footprints, quantification of occupancy, and examination of chromatin influences on TF binding. Notably, cFOOT-seq, combined with FootTrack analysis, enables de novo prediction of TF binding sites and tracking of TF occupancy dynamics. We demonstrate its application in capturing cell type-specific TFs, analyzing TF dynamics during reprogramming, and revealing TF dependencies on chromatin remodelers. Overall, cFOOT-seq represents a robust approach for investigating the genome-wide dynamics of TF occupancy and elucidating the cis-regulatory architecture underlying gene regulation.

Keywords

gene regulation / transcription factor / TF footprint / chromatin landscape / chromatin accessibility / nucleosome position / chromatin remodeling

Cite this article

Download citation ▾
Heng Wang, Ang Wu, Meng-Chen Yang, Di Zhou, Xiyang Chen, Zhifei Shi, Yiqun Zhang, Yu-Xin Liu, Kai Chen, Xiaosong Wang, Xiao-Fang Cheng, Baodan He, Yutao Fu, Lan Kang, Yujun Hou, Kun Chen, Shan Bian, Juan Tang, Jianhuang Xue, Chenfei Wang, Xiaoyu Liu, Jiejun Shi, Shaorong Gao, Jia-Min Zhang. Genome-wide investigation of transcription factor footprints and dynamics using cFOOT-seq. Protein Cell, 2025, 16(11): 932-952 DOI:10.1093/procel/pwaf071

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmad K , Brahma S , Henikoff S . Epigenetic pioneering by SWI/SNF family remodelers. Mol Cell 2024; 84: 194- 201.

[2]

Ai S , Xiong H , Li CC et al. Profiling chromatin states using single-cell itChIP-seq. Nat Cell Biol 2019; 21: 1164- 1172.

[3]

Altemose N , Maslan A , Smith OK et al. DiMeLo-seq: a long-read, single-molecule method for mapping protein-DNA interactions genome wide. Nat Methods 2022; 19: 711- 723.

[4]

Alver BH , Kim KH , Lu P et al. The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers. Nat Commun 2017; 8: 14648.

[5]

Barisic D , Stadler MB , Iurlaro M et al. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature 2019; 569: 136- 140.

[6]

Bartosovic M , Castelo-Branco G . Multimodal chromatin profiling using nanobody-based single-cell CUT&Tag. Nat Biotechnol 2023; 41: 794- 805.

[7]

Bartosovic M , Kabbe M , Castelo-Branco G . Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat Biotechnol 2021; 39: 825- 835.

[8]

Basurto-Cayuela L , Guerrero-Martinez JA , Gomez-Marin E et al. SWI/SNF-dependent genes are defined by their chromatin landscape. Cell Rep 2024; 43: 113855.

[9]

Becker PB , Workman JL . Nucleosome remodeling and epigenetics. Cold Spring Harb Perspect Biol 2013; 5: a017905.

[10]

Bentsen M , Goymann P , Schultheis H et al. ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation. Nat Commun 2020; 11: 4267.

[11]

Bentsen M , Heger V , Schultheis H et al. TF-COMB-discovering grammar of transcription factor binding sites. Comput Struct Biotechnol J 2022; 20: 4040- 4051.

[12]

Bomber ML , Wang J , Liu Q et al. Human SMARCA5 is continuously required to maintain nucleosome spacing. Mol Cell 2023; 83: 507- 522.e6.

[13]

Bracken AP , Brien GL , Verrijzer CP . Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev 2019; 33: 936- 959.

[14]

Brahma S , Henikoff S . The BAF chromatin remodeler synergizes with RNA polymerase II and transcription factors to evict nucleosomes. Nat Genet 2024; 56: 100- 111.

[15]

Buenrostro JD , Giresi PG , Zaba LC et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 2013; 10: 1213- 1218.

[16]

Cai Y , Jin J , Yao T et al. YY1 functions with INO80 to activate transcription. Nat Struct Mol Biol 2007; 14: 872- 874.

[17]

Carter B , Ku WL , Kang JY et al. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Nat Commun 2019; 10: 3747.

[18]

Cenik BK , Shilatifard A . COMPASS and SWI/SNF complexes in development and disease. Nat Rev Genet 2021; 22: 38- 58.

[19]

Chronis C , Fiziev P , Papp B et al. Cooperative binding of transcription factors orchestrates reprogramming. Cell 2017; 168: 442- 459.e20.

[20]

Clapier CR , Iwasa J , Cairns BR et al. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol 2017; 18: 407- 422.

[21]

De Boer CG , Taipale J . Hold out the genome: a roadmap to solving the cis-regulatory code. Nature 2024; 625: 41- 50.

[22]

De Moraes MH , Hsu F , Huang D et al. An interbacterial DNA deaminase toxin directly mutagenizes surviving target populations. eLife 2021; 10: e62967.

[23]

Eraslan G , Avsec Z , Gagneur J et al. Deep learning: new computational modelling techniques for genomics. Nat Rev Genet 2019; 20: 389- 403.

[24]

Ernst J , Kellis M . ChromHMM: automating chromatinstate discovery and characterization. Nat Methods 2012; 9: 215- 216.

[25]

Eustermann S , Patel AB , Hopfner KP et al. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol 2024; 25: 309- 332.

[26]

Gerstein MB , Kundaje A , Hariharan M et al. Architecture of the human regulatory network derived from ENCODE data. Nature 2012; 489: 91- 100.

[27]

Gilmour DS , Lis JT . Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci U S A 1984; 81: 4275- 4279.

[28]

Gopalan S , Wang Y , Harper NW et al. Simultaneous profiling of multiple chromatin proteins in the same cells. Mol Cell 2021; 81: 4736- 4746.e5.

[29]

Grosselin K , Durand A , Marsolier J et al. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nat Genet 2019; 51: 1060- 1066.

[30]

Harada A , Maehara K , Handa T et al. A chromatin integration labelling method enables epigenomic profiling with lower input. Nat Cell Biol 2019; 21: 287- 296.

[31]

He HH , Meyer CA , Hu SS et al. Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nat Methods 2014; 11: 73- 78.

[32]

He Q , Johnston J , Zeitlinger J . ChIP-nexus enables improved detection of in vivo transcription factor binding footprints. Nat Biotechnol 2015; 33: 395- 401.

[33]

He R , Dong W , Wang Z et al. Genome-wide single-cell and single-molecule footprinting of transcription factors with deaminase. Proc Natl Acad Sci U S A 2024; 121: e2423270121.

[34]

Hesselberth JR , Chen X , Zhang Z et al. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat Methods 2009; 6: 283- 289.

[35]

Hu Y , Horlbeck MA , Zhang R et al. Multiscale footprints reveal the organization of cis-regulatory elements. Nature 2025; 638: 779- 786.

[36]

Iurlaro M , Stadler MB , Masoni F et al. Mammalian SWI/SNF continuously restores local accessibility to chromatin. Nat Genet 2021; 53: 279- 287.

[37]

Iurlaro M , Masoni F , Flyamer IM et al. Systematic assessment of ISWI subunits shows that NURF creates local accessibility for CTCF. Nat Genet 2024; 56: 1203- 1212.

[38]

Johnson DS , Mortazavi A , Myers RM et al. Genome-wide mapping of in vivo protein-DNA interactions. Science 2007; 316: 1497- 1502.

[39]

Jolma A , Kivioja T , Toivonen J et al. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res 2010; 20: 861- 873.

[40]

Jolma A , Yan J , Whitington T et al. DNA-binding specificities of human transcription factors. Cell 2013; 152: 327- 339.

[41]

Jolma A , Yin Y , Nitta KR et al. DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature 2015; 527: 384- 388.

[42]

Kadoch C , Hargreaves DC , Hodges C et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet 2013; 45: 592- 601.

[43]

Kaya-Okur HS , Wu SJ , Codomo CA et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 2019; 10: 1930.

[44]

Kim S , Wysocka J . Deciphering the multi-scale, quantitative cis-regulatory code. Mol Cell 2023; 83: 373- 392.

[45]

Klemm SL , Shipony Z , Greenleaf WJ . Chromatin accessibility and the regulatory epigenome. Nat Rev Genet 2019; 20: 207- 220.

[46]

Krebs AR . Studying transcription factor function in the genome at molecular resolution. Trends Genet 2021; 37: 798- 806.

[47]

Krebs AR , Imanci D , Hoerner L et al. Genome-wide single-molecule footprinting reveals high RNA polymerase II turnover at paused promoters. Mol Cell 2017; 67: 422.e4.

[48]

Lambert SA , Jolma A , Campitelli LF et al. The human transcription factors. Cell 2018; 172: 650- 665.

[49]

Li D , Liu J , Yang X et al. Chromatin accessibility dynamics during iPSC reprogramming. Cell Stem Cell 2017; 21: 819- 833.e6.

[50]

Li Z , Schulz MH , Look T et al. Identification of transcription factor binding sites using ATAC-seq. Genome Biol 2019; 20: 45.

[51]

Liu Y , He J , Chen R et al. AP-1 activity is a major barrier of human somatic cell reprogramming. Cell Mol Life Sci 2021; 78: 5847- 5863.

[52]

Lochs SJA , Van Der Weide RH , De Luca KL et al. Combinatorial single-cell profiling of major chromatin types with MAbID. Nat Methods 2024; 21: 72- 82.

[53]

Martin BJE , Ablondi EF , Goglia C et al. Global identification of SWI/SNF targets reveals compensation by EP400. Cell 2023; 186: 5290- 5307.e26.

[54]

Meers MP , Llagas G , Janssens DH et al. Multifactorial profiling of epigenetic landscapes at single-cell resolution using MulTI-Tag. Nat Biotechnol 2023; 41: 708- 716.

[55]

Mi L , Shi M , Li YX et al. DddA homolog search and engineering expand sequence compatibility of mitochondrial base editing. Nat Commun 2023; 14: 874.

[56]

Mok BY , De Moraes MH , Zeng J et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 2020; 583: 631- 637.

[57]

Moyers BA , Partridge EC , Mackiewicz M et al. Characterization of human transcription factor function and patterns of gene regulation in HepG2 cells. Genome Res 2023; 33: 1879- 1892.

[58]

Neph S , Stergachis AB , Reynolds A et al. Circuitry and dynamics of human transcription factor regulatory networks. Cell 2012a; 150: 1274- 1286.

[59]

Neph S , Vierstra J , Stergachis AB et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 2012b; 489: 83- 90.

[60]

Papillon JPN , Nakajima K , Adair CD et al. Discovery of orally active inhibitors of Brahma homolog (BRM)/SMARCA2 ATPase activity for the treatment of Brahma related gene 1 (BRG1)/SMARCA4-mutant cancers. J Med Chem 2018; 61: 10155- 10172.

[61]

Partridge EC , Chhetri SB , Prokop JW et al. Occupancy maps of 208 chromatin-associated proteins in one human cell type. Nature 2020; 583: 720- 728.

[62]

Preissl S , Gaulton KJ , Ren B . Characterizing cis-regulatory elements using single-cell epigenomics. Nat Rev Genet 2022; 24: 21- 43.

[63]

Rauluseviciute I , Riudavets-Puig R , Blanc-Mathieu R et al. JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles. Nucleic Acids Res 2024; 52: D174- D182.

[64]

Rhee HS , Pugh BF . Comprehensive genome-wide proteinDNA interactions detected at single-nucleotide resolution. Cell 2011; 147: 1408- 1419.

[65]

Schick S , Grosche S , Kohl KE et al. Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat Genet 2021; 53: 269- 278.

[66]

Shain AH , Pollack JR . The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One 2013; 8: e55119.

[67]

Shipony Z , Marinov GK , Swaffer MP et al. Long-range single-molecule mapping of chromatin accessibility in eukaryotes. Nat Methods 2020; 17: 319- 327.

[68]

Skene PJ , Henikoff S . An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 2017; 6: e21856.

[69]

Sonmezer C , Kleinendorst R , Imanci D et al. Molecular cooccupancy identifies transcription factor binding cooperativity in vivo. Mol Cell 2021; 81: 267.e6.

[70]

Spitz F , Furlong EE . Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 2012; 13: 613- 626.

[71]

Stergachis AB , Debo BM , Haugen E et al. Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science 2020; 368: 1449- 1454.

[72]

Sung MH , Baek S , Hager GL . Genome-wide footprinting: ready for prime time? Nat Methods 2016; 13: 222- 228.

[73]

Vaquerizas JM , Kummerfeld SK , Teichmann SA et al. A census of human transcription factors: function, expression and evolution. Nat Rev Genet 2009; 10: 252- 263.

[74]

Vierstra J , Lazar J , Sandstrom R et al. Global reference mapping of human transcription factor footprints. Nature 2020; 583: 729- 736.

[75]

Vinckevicius A , Parker JB , Chakravarti D . Genomic determinants of THAP11/ZNF143/HCFC1 complex recruitment to chromatin. Mol Cell Biol 2015; 35: 4135- 4146.

[76]

Wang Q , Xiong H , Ai S et al. CoBATCH for high-throughput single-cell epigenomic profiling. Mol Cell 2019; 76: 206- 216.e7.

[77]

Weng Z , Ruan F , Chen W et al. BIND&MODIFY: a long-range method for single-molecule mapping of chromatin modifications in eukaryotes. Genome Biol 2023; 24: 61.

[78]

Wiechens N , Singh V , Gkikopoulos T et al. The chromatin remodelling enzymes SNF2H and SNF2L position nucleosomes adjacent to CTCF and other transcription factors. PLoS Genet 2016; 12: e1005940.

[79]

Xie Z , Sokolov I , Osmala M et al. DNA-guided transcription factor interactions extend human gene regulatory code. Nature 2025; 641: 1329- 1338.

[80]

Xiong H , Wang Q , Li CC et al. Single-cell joint profiling of multiple epigenetic proteins and gene transcription. Sci Adv 2024; 10: eadi3664.

[81]

Yue X , Xie Z , Li M et al. Simultaneous profiling of histone modifications and DNA methylation via nanopore sequencing. Nat Commun 2022; 13: 7939.

[82]

Zheng R , Wan C , Mei S et al. Cistrome data browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res 2019; 47: D729- D735.

RIGHTS & PERMISSIONS

The Author(s). Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (4219KB)

Supplementary files

Supplementary_Figures_S1-S9_Tables_S1-S8

Supplementary_Tables

Supplementary_Materials

3

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/