Optimized derivation and culture system of human naïve pluripotent stem cells with enhanced DNA methylation status and genomic stability

Yan Bi , Jindian Hu , Tao Wu , Zhaohui Ouyang , Tan Lin , Jiaxing Sun , Xinbao Zhang , Xiaoyu Xu , Hong Wang , Ke Wei , Shaorong Gao , Yixuan Wang

Protein Cell ›› 2025, Vol. 16 ›› Issue (10) : 858 -872.

PDF (42844KB)
Protein Cell ›› 2025, Vol. 16 ›› Issue (10) : 858 -872. DOI: 10.1093/procel/pwaf053
RESEARCH ARTICLE

Optimized derivation and culture system of human naïve pluripotent stem cells with enhanced DNA methylation status and genomic stability

Author information +
History +
PDF (42844KB)

Abstract

Human naïve pluripotent stem cells (PSCs) hold great promise for embryonic development studies. Existing induction and culture strategies for these cells, heavily dependent on MEK inhibitors, lead to widespread DNA hypomethylation, aberrant imprinting loss, and genomic instability during extended culture. Here, employing high-content analysis alongside a bifluorescence reporter system indicative of human naïve pluripotency, we screened over 1,600 chemicals and identified seven promising candidates. From these, we developed four optimized media—LAY, LADY, LUDY, and LKPY—that effectively induce and sustain PSCs in the naïve state. Notably, cells reset or cultured in these media, especially in the LAY system, demonstrate improved genome-wide DNA methylation status closely resembling that of pre-implantation counterparts, with partially restored imprinting and significantly enhanced genomic stability. Overall, our study contributes advancements to naïve pluripotency induction and long-term maintenance, providing insights for further applications of naïve PSCs.

Keywords

human naïve culture system / bifluorescence reporter system / high-content analysis / DNA methylation / genomic stability

Cite this article

Download citation ▾
Yan Bi, Jindian Hu, Tao Wu, Zhaohui Ouyang, Tan Lin, Jiaxing Sun, Xinbao Zhang, Xiaoyu Xu, Hong Wang, Ke Wei, Shaorong Gao, Yixuan Wang. Optimized derivation and culture system of human naïve pluripotent stem cells with enhanced DNA methylation status and genomic stability. Protein Cell, 2025, 16(10): 858-872 DOI:10.1093/procel/pwaf053

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams DJ , Barlas B , McIntyre RE et al.; Sanger Mouse Genetics Project. Genetic determinants of micronucleus formation in vivo. Nature 2024; 627: 130- 136.

[2]

An C , Feng G , Zhang J et al. Overcoming autocrine FGF signaling-induced heterogeneity in naive human ESCs enables modeling of random X chromosome inactivation. Cell Stem Cell 2020; 27: 482- 497.e4.

[3]

Bayerl J , Ayyash M , Shani T et al. Principles of signaling pathway modulation for enhancing human naive pluripotency induction. Cell Stem Cell 2021; 28: 1549- 1565.e12.

[4]

Bi Y , Tu Z , Zhang Y et al. Identification of ALPPL2 as a naive pluripotent state-specific surface protein essential for human naive pluripotency regulation. Cell Rep 2020; 30: 3917- 3931.e5.

[5]

Bi Y , Tu Z , Zhou J et al. Cell fate roadmap of human primedto-naive transition reveals preimplantation cell lineage signatures. Nat Commun 2022; 13: 3147.

[6]

Bonilla B , Hengel SR , Grundy MK et al. RAD51 gene family structure and function. Annu Rev Genet 2020; 54: 25- 46.

[7]

Bredenkamp N , Stirparo GG , Nichols J et al. The cellsurface marker Sushi containing domain 2 facilitates establishment of human naive pluripotent stem cells. Stem Cell Rep 2019; 12: 1212- 1222.

[8]

Cadieux B , Ching TT , VandenBerg SR et al. Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res 2006; 66: 8469- 8476.

[9]

Cargill M , Venkataraman R , Lee S . DEAD-Box RNA helicases and genome stability. Genes (Basel) 2021; 12: 1471.

[10]

Chan YS , Göke J , Ng JH et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 2013; 13: 663- 675.

[11]

Chen Y , Chen J , Sun X et al. The SIRT6 activator MDL-800 improves genomic stability and pluripotency of old murine-derived iPS cells. Aging Cell 2020; 19: e13185.

[12]

Chen Y , Zhen Z , Chen L et al. Androgen signaling stabilizes genomes to counteract senescence by promoting XRCC4 transcription. EMBO Rep 2023; 24: e56984.

[13]

Choi J , Huebner AJ , Clement K et al. Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature 2017; 548: 219- 223.

[14]

Court F , Tayama C , Romanelli V et al. Genome-wide parentof-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res 2014; 24: 554- 569.

[15]

Deniz O , Frost JM , Branco MR . Regulation of transposable elements by DNA modifications. Nat Rev Genet 2019; 20: 417- 431.

[16]

Di Stefano B , Ueda M , Sabri S et al. Reduced MEK inhibition preserves genomic stability in naive human embryonic stem cells. Nat Methods 2018; 15: 732- 740.

[17]

Fu J , Zhou S , Xu H et al. ATM-ESCO2-SMC3 axis promotes 53BP1 recruitment in response to DNA damage and safeguards genome integrity by stabilizing cohesin complex. Nucleic Acids Res 2023; 51: 7376- 7391.

[18]

Gafni O , Weinberger L , Mansour AA et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 2013; 504: 282- 286.

[19]

Guo H , Zhu P , Yan L et al. The DNA methylation landscape of human early embryos. Nature 2014; 511: 606- 610.

[20]

Guo G , von Meyenn F , Rostovskaya M et al. Epigenetic resetting of human pluripotency. Development 2017; 144: 2748- 2763.

[21]

Guo G , Stirparo GG , Strawbridge SE et al. Human naive epiblast cells possess unrestricted lineage potential. Cell Stem Cell 2021; 28: 1040- 1056.e6.

[22]

Hanna J , Cheng AW , Saha K et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A 2010; 107: 9222- 9227.

[23]

Huang M , Yao F , Nie L et al. FACS-based genome-wide CRISPR screens define key regulators of DNA damage signaling pathways. Mol Cell 2023; 83: 2810- 2828.e6.

[24]

Io S , Kabata M , Iemura Y et al. Capturing human trophoblast development with naive pluripotent stem cells in vitro. Cell Stem Cell 2021; 28: 1023- 1039.e13.

[25]

Jima DD , Skaar DA , Planchart A et al. Genomic map of candidate human imprint control regions: the imprintome. Epigenetics 2022; 17: 1920- 1943.

[26]

Kagawa H , Javali A , Khoei HH et al. Human blastoids model blastocyst development and implantation. Nature 2022; 601: 600- 605.

[27]

Li C , Stoma S , Lotta LA et al. Genome-wide association analysis in humans links nucleotide metabolism to leukocyte telomere length. Am J Hum Genet 2020; 106: 389- 404.

[28]

Liao X , Zhu W , Zhou J et al. Repetitive DNA sequence detection and its role in the human genome. Commun Biol 2023; 6: 954.

[29]

Linneberg-Agerholm M , Wong YF , Romero Herrera JA et al. Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm. Development 2019; 146: dev180620.

[30]

Liu X , Nefzger CM , Rossello FJ et al. Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming. Nat Methods 2017; 14: 1055- 1062.

[31]

Mazid MA , Ward C , Luo Z et al. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage. Nature 2022; 605: 315- 324.

[32]

Meng H , Cao Y , Qin J et al. DNA methylation, its mediators and genome integrity. Int J Biol Sci 2015; 11: 604- 617.

[33]

Nakanishi Y , Mizuno H , Sase H et al. ERK signal suppression and sensitivity to CH5183284/Debio 1347, a selective FGFR inhibitor. Mol Cancer Ther 2015; 14: 2831- 2839.

[34]

Ohtani H , Liu M , Zhou W et al. Switching roles for DNA and histone methylation depend on evolutionary ages of human endogenous retroviruses. Genome Res 2018; 28: 1147- 1157.

[35]

Okae H , Chiba H , Hiura H et al. Genome-wide analysis of DNA methylation dynamics during early human development. PLoS Genet 2014; 10: e1004868.

[36]

Pastor WA , Chen D , Liu W et al. Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory. Cell Stem Cell 2016; 18: 323- 329.

[37]

Petropoulos S , Edsgärd D , Reinius B et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 2016; 165: 1012- 1026.

[38]

Soto-Palma C , Niedernhofer LJ , Faulk CD et al. Epigenetics, DNA damage, and aging. J Clin Invest 2022; 132: e158446.

[39]

Stirparo GG , Boroviak T , Guo G et al. Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast. Development 2018; 145: dev158501.

[40]

Sun X , Tang H , Chen Y et al. Loss of the receptors ER, PR and HER2 promotes USP15-dependent stabilization of PARP1 in triple-negative breast cancer. Nat Cancer 2023; 4: 716- 733.

[41]

Switzer CH , Cho HJ , Eykyn TR et al. NOS2 and S-nitrosothiol signaling induces DNA hypomethylation and LINE-1 retrotransposon expression. Proc Natl Acad Sci U S A 2022; 119: e2200022119.

[42]

Takashima Y , Guo G , Loos R et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 2014; 158: 1254- 1269.

[43]

Theunissen TW , Powell BE , Wang H et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 2014; 15: 471- 487.

[44]

Theunissen TW , Friedli M , He Y et al. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell 2016; 19: 502- 515.

[45]

Xu X , Qiao W , Linke SP et al. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet 2001; 28: 266- 271.

[46]

Yan L , Yang M , Guo H et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 2013; 20: 1131- 1139.

[47]

Yanagida A , Spindlow D , Nichols J et al. Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell 2021; 28: 1016- 1022.e4.

[48]

Yu L , Wei Y , Duan J et al. Blastocyst-like structures generated from human pluripotent stem cells. Nature 2021; 591: 620- 626.

[49]

Yu L , Logsdon D , Pinzon-Arteaga CA et al. Large-scale production of human blastoids amenable to modeling blastocyst development and maternal-fetal cross talk. Cell Stem Cell 2023; 30: 1246- 1261.e9.

[50]

Zhao Q , Parris AB , Howard EW et al. FGFR inhibitor, AZD4547, impedes the stemness of mammary epithelial cells in the premalignant tissues of MMTV-ErbB2 transgenic mice. Sci Rep 2017; 7: 11306.

[51]

Zhou W , Liang G , Molloy PL et al. DNA methylation enables transposable element-driven genome expansion. Proc Natl Acad Sci U S A 2020; 117: 19359- 19366.

[52]

Zhu P , Guo H , Ren Y et al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat Genet 2018; 50: 12- 19.

RIGHTS & PERMISSIONS

The Author(s). Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (42844KB)

Supplementary files

Supplementary_Figures_S1-S8

Supplementary_Table_S1

Supplementary_Table_S2

Supplementary_Table_S3

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/