RNA G-quadruplex (rG4) exacerbates cellular senescence by mediating ribosome pausing

Haoxian Zhou , Shu Wu , Bin Li , Rongjinlei Zhang , Ying Zou , Mibu Cao , Anhua Xu , Kewei Zheng , Qinghua Zhou , Jia Wang , Jinping Zheng , Jianhua Yang , Yuanlong Ge , Zhanyi Lin , Zhenyu Ju

Protein Cell ›› 2025, Vol. 16 ›› Issue (11) : 953 -967.

PDF (4907KB)
Protein Cell ›› 2025, Vol. 16 ›› Issue (11) : 953 -967. DOI: 10.1093/procel/pwaf047
RESEARCH ARTICLE

RNA G-quadruplex (rG4) exacerbates cellular senescence by mediating ribosome pausing

Author information +
History +
PDF (4907KB)

Abstract

Loss of protein homeostasis is a hallmark of cellular senescence, and ribosome pausing plays a crucial role in the collapse of proteostasis. However, our understanding of ribosome pausing in senescent cells remains limited. In this study, we utilized ribosome profiling and G-quadruplex RNA immunoprecipitation sequencing techniques to explore the impact of RNA G-quadruplex (rG4) on the translation efficiency in senescent cells. Our results revealed a reduction in the translation efficiency of rG4-rich genes in senescent cells and demonstrated that rG4 structures within coding sequence can impede translation both in vivo and in vitro. Moreover, we observed a significant increase in the abundance of rG4 structures in senescent cells, and the stabilization of the rG4 structures further exacerbated cellular senescence. Mechanistically, the RNA helicase DHX9 functions as a key regulator of rG4 abundance, and its reduced expression in senescent cells contributing to increased ribosome pausing. Additionally, we also observed an increased abundance of rG4, an imbalance in protein homeostasis, and reduced DHX9 expression in aged mice. In summary, our findings reveal a novel biological role for rG4 and DHX9 in the regulation of translation and proteostasis, which may have implications for delaying cellular senescence and the aging process.

Keywords

cellular senescence / ribosme pausing / RNA G-quadruplex

Cite this article

Download citation ▾
Haoxian Zhou, Shu Wu, Bin Li, Rongjinlei Zhang, Ying Zou, Mibu Cao, Anhua Xu, Kewei Zheng, Qinghua Zhou, Jia Wang, Jinping Zheng, Jianhua Yang, Yuanlong Ge, Zhanyi Lin, Zhenyu Ju. RNA G-quadruplex (rG4) exacerbates cellular senescence by mediating ribosome pausing. Protein Cell, 2025, 16(11): 953-967 DOI:10.1093/procel/pwaf047

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asamitsu S , Yabuki Y , Matsuo K et al. RNA G-quadruplex organizes stress granule assembly through DNAPTP6 in neurons. Sci Adv 2023; 9: eade2035.

[2]

Bang M , Kim DG , Gonzales EL et al. Etoposide induces mitochondrial dysfunction and cellular senescence in primary cultured rat astrocytes. Biomol Therap 2019; 27: 530- 539.

[3]

Boulias K , Greer EL . Biological roles of adenine methylation in RNA. Nat Rev Genet 2023; 24: 143- 160.

[4]

Brandman O , Stewart-Ornstein J , Wong D et al. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 2012; 151: 1042- 1054.

[5]

Chen XC , Chen SB , Dai J et al. Tracking the dynamic folding and unfolding of RNA G-quadruplexes in live cells. Angew Chem Int Ed 2018; 57: 4702- 4706.

[6]

Chen X , Gong W , Shao X et al. METTL3-mediated m6A modification of ATG7 regulates autophagy-GATA4 axis to promote cellular senescence and osteoarthritis progression. Ann Rheum Dis 2022; 81: 87- 99.

[7]

Danino YM , Molitor L , Rosenbaum-Cohen T et al. BLM helicase protein negatively regulates stress granule formation through unwinding RNA G-quadruplex structures. Nucleic Acids Res 2023; 51: 9369- 9384.

[8]

Darnell AM , Subramaniam AR , O'shea EK . Translational control through differential ribosome pausing during amino acid limitation in mammalian cells. Mol Cell 2018; 71: 229- 243.e11.

[9]

Fay MM , Lyons SM , Ivanov P . RNA G-quadruplexes in biology: principles and molecular mechanisms. J Mol Biol 2017; 429: 2127- 2147.

[10]

Galluzzi L , Yamazaki T , Kroemer G . Linking cellular stress responses to systemic homeostasis. Nat Rev Mol Cell Biol 2018; 19: 731- 745.

[11]

Godin JD , Creppe C , Laguesse S et al. Emerging roles for the unfolded protein response in the developing nervous system. Trends Neurosci 2016; 39: 394- 404.

[12]

Gorgoulis V , Adams PD , Alimonti A et al. Cellular senescence: defining a path forward. Cell 2019; 179: 813- 827.

[13]

Han P , Shichino Y , Schneider-Poetsch T et al. Genome-wide survey of ribosome collision. Cell Reports 2020; 31: 107610.

[14]

Hartman TR , Qian S , Bolinger C et al. RNA helicase A is necessary for translation of selected messenger RNAs. Nat Struct Mol Biol 2006; 13: 509- 516.

[15]

Howard CJ , Frost A . Ribosome-associated quality control and CAT tailing. Crit Rev Biochem Mol Biol 2021; 56: 603- 620.

[16]

Huppert JL , Balasubramanian S . Prevalence of quadruplexes in the human genome. Nucleic Acids Res 2005; 33: 2908- 2916.

[17]

Kharel P , Fay M , Manasova EV et al. Stress promotes RNA G-quadruplex folding in human cells. Nat Commun 2023; 14: 205.

[18]

Lee T , Di Paola D , Malina A et al. Suppression of the DHX9 helicase induces premature senescence in human diploid fibroblasts in a p53-dependent manner. J Biol Chem 2014; 289: 22798- 22814.

[19]

Lee C-Y , Joshi M , Wang A et al. 5'UTR G-quadruplex structure enhances translation in size dependent manner. Nat Commun 2024; 15: 3963.

[20]

Li G-W , Oh E , Weissman JS . The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 2012; 484: 538- 541.

[21]

Lopez-Otin C , Blasco MA , Partridge L et al. The hallmarks of aging. Cell 2013; 153: 1194- 1217.

[22]

Montague-Cardoso K . Cellular proteostasis decline in human senescence. Commun Biol 2021; 4: 17.

[23]

Mulroney TE , Poyry T , Yam-Puc JC et al. N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature 2024; 625: 189- 194.

[24]

Murat P , Marsico G , Herdy B et al. RNA G-quadruplexes at upstream open reading frames cause DHX36- and DHX9-dependent translation of human mRNAs. Genome Biol 2018; 19: 229.

[25]

Pohl C , Dikic I . Cellular quality control by the ubiquitinproteasome system and autophagy. Science 2019; 366: 818- 822.

[26]

Rubinsztein DC , Marino G , Kroemer G . Autophagy and aging. Cell 2011; 146: 682- 695.

[27]

Salminen A , Kaarniranta K , Kauppinen A . Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging (Milano) 2012; 4: 166- 175.

[28]

Senft D , Ronai ZA . UPR, autophagy, and mitochondria cross-talk underlies the ER stress response. Trends Biochem Sci 2015; 40: 141- 148.

[29]

Sha Y , Rao L , Settembre C et al. STUB1 regulates TFEB-induced autophagy-lysosome pathway. EMBO J 2017; 36: 2544- 2552.

[30]

Shao S , Brown A , Santhanam B et al. Structure and assembly pathway of the ribosome quality control complex. Mol Cell 2015; 57: 433- 444.

[31]

Snieckute G , Ryder L , Vind AC et al. ROS-induced ribosome impairment underlies ZAKalpha-mediated metabolic decline in obesity and aging. Science 2023; 382: eadf3208.

[32]

Stein KC , Morales-Polanco F , Van Der Lienden J et al. Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature 2022; 601: 637- 642.

[33]

Turner M , Danino YM , Barshai M et al. rG4detector, a novel RNA G-quadruplex predictor, uncovers their impact on stress granule formation. Nucleic Acids Res 2022; 50: 11426- 11441.

[34]

Vaninsberghe M , Van Den Berg J , Andersson-Rolf A et al. Single-cell Ribo-seq reveals cell cycle-dependent translational pausing. Nature 2021; 597: 561- 565.

[35]

Varshney D , Cuesta SM , Herdy B et al. RNA G-quadruplex structures control ribosomal protein production. Sci Rep 2021; 11: 22735.

[36]

Wang X , Zhao BS , Roundtree IA et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 2015; 161: 1388- 1399.

[37]

Wilson DM , Cookson MR , Van Den Bosch L et al. Hallmarks of neurodegenerative diseases. Cell 2023; 186: 693- 714.

[38]

Wu CC , Peterson A , Zinshteyn B et al. Ribosome collisions trigger general stress responses to regulate cell fate. Cell 2020; 182: 404- 416.e14.

[39]

Xiao Z , Zou Q , Liu Y et al. Genome-wide assessment of differential translations with ribosome profiling data. Nat Commun 2016; 7: 11194.

[40]

Yan LL , Zaher HS . How do cells cope with RNA damage and its consequences? J Biol Chem 2019; 294: 15158- 15171.

[41]

Yuan WF , Wan LY , Peng H et al. The influencing factors and functions of DNA G-quadruplexes. Cell Biochem Funct 2020; 38: 524- 532.

[42]

Zheng K-W , Zhang J-Y , He Y-D et al. Detection of genomic G-quadruplexes in living cells using a small artificial protein. Nucleic Acids Res 2020; 48: 11706- 11720.

[43]

Zhou K , Choe KT , Zaidi Z et al. RNA helicase A interacts with dsDNA and topoisomerase IIalpha. Nucleic Acids Res 2003; 31: 2253- 2260.

[44]

Zhou Y , Panhale A , Shvedunova M et al. RNA damage compartmentalization by DHX9 stress granules. Cell 2024; 187: 1701- 1718.e28.

RIGHTS & PERMISSIONS

The Author(s). Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (4907KB)

Supplementary files

Supplementary_Materials

Supplementary_Materials

3

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/