The nuclear phosphoinositide-p53 signalosome in the regulation of cell motility

Xiaoting Hou , Yu Chen , Bo Zhou , Fengting Liu , Lingyun Dai , Chunbo Chen , Noah D. Carrillo , Vincent L. Cryns , Richard A. Anderson , Jichao Sun , Mo Chen

Protein Cell ›› 2025, Vol. 16 ›› Issue (10) : 840 -857.

PDF (13728KB)
Protein Cell ›› 2025, Vol. 16 ›› Issue (10) : 840 -857. DOI: 10.1093/procel/pwaf043
REVIEW

The nuclear phosphoinositide-p53 signalosome in the regulation of cell motility

Author information +
History +
PDF (13728KB)

Abstract

Dysregulation of p53 and phosphoinositide (PIPn) signaling are both key drivers of oncogenesis and metastasis. Our recent findings reveal a previously unrecognized interaction between these pathways, converging in the nucleus to form a PIPn-p53 signalosome that modulates nuclear AKT activation and downstream signaling, thereby influencing cancer cell survival and motility. This review examines recent insights into nuclear PIPn signaling in the context of established roles for p53 in cell dynamics and migration while also deliberating current research on how nuclear PIPns interact with p53 to form signalosomes that affect cell motility. We emphasize the critical role of PIPns in stabilizing p53 and activating de novo nuclear AKT signaling, which subsequently modulates key motility-related pathways. Understanding the unique operation and function of the PIPn-p53 signalosome in nuclear phosphatidylinositol 3-kinase (PI3K)-AKT activation offers novel therapeutic strategies for controlling cancer metastasis by targeting pertinent interactions and events.

Keywords

phosphoinositide / p53 / signalosome / nucleus / cell motility

Cite this article

Download citation ▾
Xiaoting Hou, Yu Chen, Bo Zhou, Fengting Liu, Lingyun Dai, Chunbo Chen, Noah D. Carrillo, Vincent L. Cryns, Richard A. Anderson, Jichao Sun, Mo Chen. The nuclear phosphoinositide-p53 signalosome in the regulation of cell motility. Protein Cell, 2025, 16(10): 840-857 DOI:10.1093/procel/pwaf043

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abraham AG , O’Neill E . PI3K/Akt-mediated regulation of p53 in cancer. Biochem Soc Trans 2014; 42: 798- 803.

[2]

Agarwal ML , Taylor WR , Chernov MV et al. The p53 network. J Biol Chem 1998; 273: 1- 4.

[3]

Ahmed NN , Franke TF , Bellacosa A et al. The proteins encoded by c-akt and v-akt differ in post-translational modification, subcellular localization and oncogenic potential. Oncogene 1993; 8: 1957- 1963.

[4]

Alli-Balogun GO , Gewinner CA , Jacobs R et al. Phosphatidylinositol 4-kinase IIβ negatively regulates invadopodia formation and suppresses an invasive cellular phenotype. Mol Biol Cell 2016; 27: 4033- 4042.

[5]

Araki K , Ebata T , Guo AK et al. p53 regulates cytoskeleton remodeling to suppress tumor progression. Cell Mol Life Sci 2015; 72: 4077- 4094.

[6]

Ashlin TG , Blunsom NJ , Cockcroft S . Courier service for phosphatidylinositol: PITPs deliver on demand. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866: 158985.

[7]

Balla T . Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 2013; 93: 1019- 1137.

[8]

Balla A , Balla T . Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol 2006; 16: 351- 361.

[9]

Banfic H , Visnjic D , Mise N et al. Epidermal growth factor stimulates translocation of the class II phosphoinositide 3-kinase PI3K-C2β to the nucleus. Biochem J 2009; 422: 53- 60.

[10]

Barlow CA , Laishram RS , Anderson RA . Nuclear phosphoinositides: a signaling enigma wrapped in a compartmental conundrum. Trends Cell Biol 2010; 20: 25- 35.

[11]

Blind RD , Suzawa M , Ingraham HA . Direct modification and activation of a nuclear receptor-PIP2 complex by the inositol lipid kinase IPMK. Sci Signal 2012; 5: ra44.

[12]

Blunsom NJ , Cockcroft S . CDP-diacylglycerol synthases(CDS): gateway to phosphatidylinositol and cardiolipin synthesis. Front Cell Dev Biol 2020a; 8: 63.

[13]

Blunsom NJ , Cockcroft S . Phosphatidylinositol synthesis at the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Biol Lipids 2020b; 1865: 158471.

[14]

Boronenkov IV , Loijens JC , Umeda M et al. Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol Biol Cell 1998; 9: 3547- 3560.

[15]

Bunce MW , Boronenkov IV , Anderson RA . Coordinated activation of the nuclear ubiquitin ligase Cul3-SPOP by the generation of phosphatidylinositol 5-phosphate. J Biol Chem 2008; 283: 8678- 8686.

[16]

Bura A , Čabrijan S , Đurić I et al. A plethora of functions condensed into tiny phospholipids: the story of PI4P and PI (4,5)P2. Cells 2023; 12: 1411.

[17]

Butera A , Amelio I . Deciphering the significance of p53 mutant proteins. Trends Cell Biol 2025; 35: 258- 268.

[18]

Carrillo ND , Chen M , Wen T et al. Lipid transfer proteins and a PI 4-kinase initiate nuclear phosphoinositide signaling. BioRxiv 2025: 2023.05.08.539894.

[19]

Chakrabarti R , Sanyal S , Ghosh A et al. Phosphatidylinositol-4-phosphate 5-kinase 1α modulates ribosomal RNA gene silencing through its interaction with histone H3 Lysine 9 trimethylation and heterochromatin protein HP1-α. J Biol Chem 2015; 290: 20893- 20903.

[20]

Chang CJ , Chao CH , Xia W et al. p53 regulates epithelialmesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 2011; 13: 317- 323.

[21]

Charest PG , Firtel RA . Big roles for small GTPases in the control of directed cell movement. Biochem J 2007; 401: 377- 390.

[22]

Chen M , Choi S , Jung O et al. The specificity of EGF-stimulated IQGAP1 scaffold towards the PI3K-Akt pathway is defined by the IQ3 motif. Sci Rep 2019; 9: 9126.

[23]

Chen M , Wen T , Horn HT et al. The nuclear phosphoinositide response to stress. Cell Cycle 2020; 19: 268- 289.

[24]

Chen M , Horn HT , Wen T et al. Assessing in situ phosphoinositide-protein interactions through fluorescence proximity ligation assay in cultured cells. Methods Mol Biol 2021; 2251: 133- 142.

[25]

Chen M , Choi S , Wen T et al. A p53-phosphoinositide signalosome regulates nuclear AKT activation. Nat Cell Biol 2022; 24: 1099- 1113.

[26]

Chen C , Chen M , Wen T et al. Regulation of NRF2 by Phosphoinositides and small heat shock proteins. bioRxiv 2024:2023.10.26.564194.

[27]

Cheng GZ , Zhang W , Wang L-H . Regulation of cancer cell survival, migration, and invasion by Twist: AKT2 comes to interplay. Cancer Res 2008; 68: 957- 960.

[28]

Chibaya L , Karim B , Zhang H et al. Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proc Natl Acad Sci USA 2021; 118: e2003193118.

[29]

Choi BH , Chen Y , Dai W . Chromatin PTEN is involved in DNA damage response partly through regulating Rad52 sumoylation. Cell Cycle 2013; 12: 3442- 3447.

[30]

Choi S , Hedman AC , Sayedyahossein S et al. Agoniststimulated phosphatidylinositol-3,4,5-trisphosphate generation by scaffolded phosphoinositide kinases. Nat Cell Biol 2016; 18: 1324- 1335.

[31]

Choi S , Chen M , Cryns VL et al. A nuclear phosphoinositide kinase complex regulates p53. Nat Cell Biol 2019; 21: 462- 475.

[32]

Cingolani LA , Goda Y . Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 2008; 9: 344- 356.

[33]

Cocco L , Gilmour RS , Ognibene A et al. Synthesis of polyphos-phoinositides in nuclei of Friend cells. Evidence for polyphos-phoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem J 1987; 248: 765- 770.

[34]

Cocco L , Rubbini S , Manzoli L et al. Inositides in the nucleus:presence and characterisation of the isozymes of phospholipase β family in NIH 3T3 cells. Biochim Biophys Acta 1999; 1438: 295- 299.

[35]

Coutts AS , Weston L , La Thangue NB . A transcription co-factor integrates cell adhesion and motility with the p53 response. Proc Natl Acad Sci USA 2009; 106: 19872- 19877.

[36]

de Graaf P , Klapisz EE , Schulz TK et al. Nuclear localization of phosphatidylinositol 4-kinase β. J Cell Sci 2002; 115: 1769- 1775.

[37]

Deleris P , Bacqueville D , Gayral S et al. SHIP-2 and PTEN are expressed and active in vascular smooth muscle cell nuclei, but only SHIP-2 is associated with nuclear speckles. J Biol Chem 2003; 278: 38884- 38891.

[38]

de Vries A , Flores ER , Miranda B et al. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc Natl Acad Sci USA 2002; 99: 2948- 2953.

[39]

Didichenko SA , Thelen M . Phosphatidylinositol 3-kinase c2α contains a nuclear localization sequence and associates with nuclear speckles. J Biol Chem 2001; 276: 48135- 48142.

[40]

Ehm P , Nalaskowski MM , Wundenberg T et al. The tumor suppressor SHIP1 colocalizes in nucleolar cavities with p53 and components of PML nuclear bodies. Nucleus 2015; 6: 154- 164.

[41]

Elis W , Triantafellow E , Wolters NM et al. Down-regulation of class II phosphoinositide 3-kinase alpha expression below a critical threshold induces apoptotic cell death. Mol Cancer Res 2008; 6: 614- 623.

[42]

Elong Edimo W , Derua R , Janssens V et al. Evidence of SHIP2 Ser132 phosphorylation, its nuclear localization and stability. Biochem J 2011; 439: 391- 401.

[43]

Enomoto A , Murakami H , Asai N et al. Akt/PKB regulates actin organization and cell motility via Girdin/APE. Dev Cell 2005; 9: 389- 402.

[44]

Faenza I , Fiume R , Piazzi M et al. Nuclear inositide specific phospholipase C signalling - interactions and activity. FEBS J 2013; 280: 6311- 6321.

[45]

Gadéa G , Lapasset L , Gauthier-Rouvière C et al. Regulation of Cdc42-mediated morphological effects: a novel function for p53. EMBO J 2002; 21: 2373- 2382.

[46]

Gadea G , de Toledo M , Anguille C et al. Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J Cell Biol 2007; 178: 23- 30.

[47]

Gonzalez E , McGraw TE . The Akt kinases: isoform specificity in metabolism and cancer. Cell cycle 2009; 8: 2502- 2508.

[48]

Govindarajan B , Sbrissa D , Pressprich M et al. Adaptor proteins mediate CXCR4 and PI4KA crosstalk in prostate cancer cells and the significance of PI4KA in bone tumor growth. Sci Rep 2023; 13: 20634.

[49]

Gozani O , Karuman P , Jones DR et al. The PHD Finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 2003; 114: 99- 111.

[50]

Gozzelino L , De Santis MC , Gulluni F et al. PI(3,4)P2 signaling in cancer and metabolism. Front Oncol 2020; 10: 360.

[51]

Guo F , Gao Y , Wang L et al. p19Arf-p53 tumor suppressor pathway regulates cell motility by suppression of phosphoinositide 3-kinase and Rac1 GTPase activities. J Biol Chem 2003; 278: 14414- 14419.

[52]

Hao Y , He B , Wu L et al. Nuclear translocation of p85β promotes tumorigenesis of PIK3CA helical domain mutant cancer. Nat Commun 2022; 13: 1974.

[53]

Hassin O , Oren M . Drugging p53 in cancer: one protein, many targets. Nat Rev Drug Discovery 2023; 22: 127- 144.

[54]

Hollstein M , Sidransky D , Vogelstein B et al. p53 mutations in human cancers. Science 1991; 253: 49- 53.

[55]

Hou X , Chen Y , Carrillo ND et al. Phosphoinositide signaling at the cytoskeleton in the regulation of cell dynamics. Cell Death Dis 2025a; 16: 296.

[56]

Hou X , Ren C , Jin J et al. Phosphoinositide signalling in cell motility and adhesion. Nat Cell Biol 2025b; 27: 736- 748.

[57]

Hsuan J , Cockcroft S . The PITP family of phosphatidylinositol transfer proteins. Genome Biol 2001; 2: REVIEWS3011.

[58]

Huang Y , Jeong JS , Okamura J et al. Global tumor protein p53/p63 interactome: making a case for cisplatin chemoresistance. Cell Cycle 2012; 11: 2367- 2379.

[59]

Isaji T , Im S , Kameyama A et al. A complex between phosphatidylinositol 4-kinase IIα and integrin α3β1 is required for N-glycan sialylation in cancer cells. J Biol Chem 2019; 294: 4425- 4436.

[60]

Jean S , Kiger AA . Classes of phosphoinositide 3-kinases at a glance. J Cell Sci 2014; 127: 923- 928.

[61]

Jung O , Baek M-j , Wooldrik C et al. Nuclear phosphoinositide signaling promotes YAP/TAZ-TEAD transcriptional activity in breast cancer. EMBO J 2024; 43: 1740- 1769.

[62]

Kakuk A , Friedlander E , Vereb G et al. Nucleolar localization of phosphatidylinositol 4-kinase PI4K230 in various mammalian cells. Cytometry A 2006; 69: 1174- 1183.

[63]

Kakuk A , Friedlander E , Vereb G et al. Nuclear and nucleolar localization signals and their targeting function in phosphatidylinositol 4-kinase PI4K230. Exp Cell Res 2008; 314: 2376- 2388.

[64]

Kandoth C , McLellan MD , Vandin F et al. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502: 333- 339.

[65]

Karlsson T , Altankhuyag A , Dobrovolska O et al. A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphos-phoinositide interaction. Biochem J 2016; 473: 2033- 2047.

[66]

Ke M , Zhu H , Lin Y et al. Actin-related protein 2/3 complex subunit 1B promotes ovarian cancer progression by regulating the AKT/PI3K/mTOR signaling pathway. J Transl Int Med 2024; 12: 406- 423.

[67]

Kennedy MC , Lowe SW . Mutant p53: it’s not all one and the same. Cell Death Differ 2022; 29: 983- 987.

[68]

Kouchi Z , Fujiwara Y , Yamaguchi H et al. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells. Biochem Biophys Res Commun 2011; 408: 523- 529.

[69]

Kruse J-P , Gu W . Modes of p53 Regulation. Cell 2009; 137: 609- 622.

[70]

Kubbutat MH , Jones SN , Vousden KH . Regulation of p53 stability by Mdm2. Nature 1997; 387: 299- 303.

[71]

Kumar A , Redondo-Munoz J , Perez-Garcia V et al. Nuclear but not cytosolic phosphoinositide 3-kinase beta has an essential function in cell survival. Mol Cell Biol 2011; 31: 2122- 2133.

[72]

Kunrath-Lima M , de Miranda MC , Ferreira ADF et al. Phospholipase C delta 4 (PLCδ4) is a nuclear protein involved in cell proliferation and senescence in mesenchymal stromal stem cells. Cell Signal 2018; 49: 59- 67.

[73]

Langerød A , Zhao H , Borgan O et al. TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res 2007; 9: R30.

[74]

Lattanzio R , Iezzi M , Sala G et al. PLC-gamma-1 phosphorylation status is prognostic of metastatic risk in patients with early-stage Luminal-A and -B breast cancer subtypes. BMC Cancer 2019; 19: 747.

[75]

Lee SB , Xuan Nguyen TL , Choi JW et al. Nuclear Akt interacts with B23/NPM and protects it from proteolytic cleavage, enhancing cell survival. Proc Natl Acad Sci USA 2008; 105: 16584- 16589.

[76]

Li Y , Luan C . PLCE1 promotes the invasion and migration of esophageal cancer cells by up-regulating the PKCα/NF-κB pathway. Yonsei Med J 2018; 59: 1159- 1165.

[77]

Li G , Nelsen C , Hendrickson EA . Ku86 is essential in human somatic cells. Proc Natl Acad Sci USA 2002; 99: 832- 837.

[78]

Li P , Wang D , Li H et al. Identification of nucleolus-localized PTEN and its function in regulating ribosome biogenesis. Mol Biol Rep 2014; 41: 6383- 6390.

[79]

Li J , Gao Z , Zhao D et al. PI-273, a substrate-competitive, specific small-molecule inhibitor of PI4KIIα, inhibits the growth of breast cancer cells. Cancer Res 2017; 77: 6253- 6266.

[80]

Manning BD , Toker A . AKT/PKB signaling: navigating the network. Cell 2017; 169: 381- 405.

[81]

Mantovani F , Collavin L , Del Sal G . Mutant p53 as a guardian of the cancer cell. Cell Death Differ 2019; 26: 199- 212.

[82]

Manzoli FA , Maraldi NM , Cocco L et al. Chromatin phospholipids in normal and chronic lymphocytic leukemia lymphocytes. Cancer Res 1977; 37: 843- 849.

[83]

Marques M , Kumar A , Poveda AM et al. Specific function of phosphoinositide 3-kinase beta in the control of DNA replication. Proc Natl Acad Sci USA 2009; 106: 7525- 7530.

[84]

Martelli AM , Tabellini G , Bressanin D et al. The emerging multiple roles of nuclear Akt. Biochim Biophys Acta 2012; 1823: 2168- 2178.

[85]

May P , May E . Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 1999; 18: 7621- 7636.

[86]

Mazloumi Gavgani F , Smith Arnesen V , Jacobsen RG et al. Class I Phosphoinositide 3-Kinase PIK3CA/p110α and PIK3CB/p110β Isoforms in Endometrial Cancer. Int J Mol Sci 2018; 19: 3931.

[87]

Meier R , Alessi DR , Cron P et al. Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase Bbeta. J Biol Chem 1997; 272: 30491- 30497.

[88]

Mellman DL , Gonzales ML , Song C et al. A PtdIns4, 5P2-regulated nuclear poly (A) polymerase controls expression of select mRNAs. Nature 2008; 451: 1013- 1017.

[89]

Merino-Casallo F , Gomez-Benito MJ , Hervas-Raluy S et al. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022; 16: 25- 64.

[90]

Meza-Sosa KF , Miao R , Navarro F et al. SPARCLE, a p53-induced lncRNA, controls apoptosis after genotoxic stress by promoting PARP-1 cleavage. Mol Cell 2022; 82: 785- 802.e10.

[91]

Mizuarai S , Yamanaka K , Kotani H . Mutant p53 induces the GEF-H1 oncogene, a guanine nucleotide exchange factor-H1 for RhoA, resulting in accelerated cell proliferation in tumor cells. Cancer Res 2006; 66: 6319- 6326.

[92]

Morrow AA , Alipour MA , Bridges D et al. The lipid kinase PI4KIIIβ is highly expressed in breast tumors and activates Akt in cooperation with Rab11a. Mol Cancer Res 2014; 12: 1492- 1508.

[93]

Muller PA , Vousden KH , Norman JC . p53 and its mutants in tumor cell migration and invasion. J Cell Biol 2011; 192: 209- 218.

[94]

Neri LM , Bortul R , Borgatti P et al. Proliferating or differentiating stimuli act on different lipid-dependent signaling pathways in nuclei of human leukemia cells. Mol Biol Cell 2002; 13: 947- 964.

[95]

Ogawara Y , Kishishita S , Obata T et al. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 2002; 277: 21843- 21850.

[96]

Okazaki R . Role of p53 in regulating radiation responses. Life(Basel, Switzerland) 2022; 12: 1099.

[97]

Olivier M , Hollstein M , Hainaut P . TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2010; 2: a001008.

[98]

Oren M , Prives C . p53: a tale of complexity and context. Cell 2024; 187: 1569- 1573.

[99]

Owusu Obeng E , Rusciano I , Marvi MV et al. Phosphoinositidedependent signaling in cancer: a focus on phospholipase C isozymes. Int J Mol Sci 2020; 21: 2581.

[100]

Palmieri M , Catimel B , Mouradov D et al. PI3Kα translocation mediates nuclear PtdIns(3,4,5)P3 effector signaling in colorectal cancer. Mol Cell Proteomics 2023; 22: 100529.

[101]

Pedicone C , Meyer ST , Chisholm JD et al. Targeting SHIP1 and SHIP2 in cancer. Cancers (Basel) 2021; 13: 890.

[102]

Posor Y , Jang W , Haucke V . Phosphoinositides as membrane organizers. Nat Rev Mol Cell Biol 2022; 23: 797- 816.

[103]

Razmara M , Heldin CH , Lennartsson J . Platelet-derived growth factor-induced Akt phosphorylation requires mTOR/Rictor and phospholipase C-γ1, whereas S6 phosphorylation depends on mTOR/Raptor and phospholipase D. Cell Commun Signal 2013; 11: 3.

[104]

Ren C , Carrillo ND , Cryns VL et al. Environmental pollutants and phosphoinositide signaling in autoimmunity. J Hazard Mater 2024; 465: 133080.

[105]

Rose HG , Frenster JH . Composition and metabolism of lipids within repressed and active chromatin of interphase lymphocytes. Biochim Biophys Acta 1965; 106: 577- 591.

[106]

Russo A , Okur MN , Bosland M et al. Phosphatidylinositol 3-kinase, class 2 beta (PI3KC2β) isoform contributes to neuroblastoma tumorigenesis. Cancer Lett 2015; 359: 262- 268.

[107]

Saji M , Vasko V , Kada F et al. Akt1 contains a functional leucine-rich nuclear export sequence. Biochem Biophys Res Commun 2005; 332: 167- 173.

[108]

Sale E , Sale G . Protein kinase B: signalling roles and therapeutic targeting. Cell Mol Life Sci 2008; 65: 113- 127.

[109]

Sarker D , Ang JE , Baird R et al. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin Cancer Res 2015; 21: 77- 86.

[110]

Sbrissa D , Semaan L , Govindarajan B et al. A novel cross-talk between CXCR4 and PI4KIIIα in prostate cancer cells. Oncogene 2019; 38: 332- 344.

[111]

Schill NJ , Anderson RA . Two novel phosphatidylinositol-4-phosphate 5-kinase type Igamma splice variants expressed in human cells display distinctive cellular targeting. Biochem J 2009; 422: 473- 482.

[112]

Seok YM , Azam MA , Okamoto Y et al. Enhanced Ca2+-dependent activation of phosphoinositide 3-kinase class IIα isoform-Rho axis in blood vessels of spontaneously hypertensive rats. Hypertension 2010; 56: 934- 941.

[113]

Shen WH , Balajee AS , Wang J et al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 2007; 128: 157- 170.

[114]

Sigalotti L , Covre A , Fratta E et al. Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies. J Transl Med 2010; 8: 1- 22.

[115]

Sindić A , Aleksandrova A , Fields AP et al. Presence and activation of nuclear phosphoinositide 3-kinase C2β during compensatory liver growth. J Biol Chem 2001; 276: 17754- 17761.

[116]

Singh B , Reddy PG , Goberdhan A et al. p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas. Genes Dev 2002; 16: 984- 993.

[117]

Sinkala M . Mutational landscape of cancer-driver genes across human cancers. Sci Rep 2023; 13: 12742.

[118]

Smith CD , Wells W . Phosphorylation of rat liver nuclear envelopes. II. Characterization of in vitro lipid phosphorylation. J Biol Chem 1983; 258: 9368- 9373.

[119]

Sone Y , Ito M , Shirakawa H et al. Nuclear translocation of phospholipase C-zeta, an egg-activating factor, during early embryonic development. Biochem Biophys Res Commun 2005; 330: 690- 694.

[120]

Song R , Tian K , Wang W et al. P53 suppresses cell proliferation, metastasis, and angiogenesis of osteosarcoma through inhibition of the PI3K/AKT/mTOR pathway. International Journal of Surgery (London, England) 2015; 20: 80- 87.

[121]

Srinivasan S , Wang F , Glavas S et al. Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J Cell Biol 2003; 160: 375- 385.

[122]

Stallings JD , Tall EG , Pentyala S et al. Nuclear translocation of phospholipase C-δ1 is linked to the cell cycle and nuclear phosphatidylinositol 4,5-bisphosphate. J Biol Chem 2005; 280: 22060- 22069.

[123]

Stijf-Bultsma Y , Sommer L , Tauber M et al. The basal transcription complex component TAF3 transduces changes in nuclear phosphoinositides into transcriptional output. Mol Cell 2015; 58: 453- 467.

[124]

Stuelten CH , Parent CA , Montell DJ . Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat Rev Cancer 2018; 18: 296- 312.

[125]

Sun Y , Turbin DA , Ling K et al. Type I gamma phosphatidylinositol phosphate kinase modulates invasion and proliferation and its expression correlates with poor prognosis in breast cancer. Breast Cancer Res 2010; 12: R6.

[126]

Sun Y , Isaji T , Oyama Y et al. Focal-adhesion kinase regulates the sialylation of N-glycans via the PI4KIIα-PI4P pathway. J Biol Chem 2023; 299: 105051.

[127]

Szivak I , Lamb N , Heilmeyer LM . Subcellular localization and structural function of endogenous phosphorylated phosphatidylinositol 4-kinase (PI4K92). J Biol Chem 2006; 281: 16740- 16749.

[128]

Sztacho M , Sobol M , Balaban C et al. Nuclear phosphoinositides and phase separation: important players in nuclear compartmentalization. Advances in Biological Regulation 2019; 71: 111- 117.

[129]

Tabellini G , Bortul R , Santi S et al. Diacylglycerol kinase-theta is localized in the speckle domains of the nucleus. Exp Cell Res 2003; 287: 143- 154.

[130]

Tan X , Banerjee P , Pham EA et al. PI4KIIIβ is a therapeutic target in chromosome 1q-amplified lung adenocarcinoma. Sci Transl Med 2020; 12: eaax3772.

[131]

Tanaka K , Horiguchi K , Yoshida T et al. Evidence that a phosphatidylinositol 3,4,5-trisphosphate-binding protein can function in nucleus. J Biol Chem 1999; 274: 3919- 3922.

[132]

Thapa N , Chen M , Horn HT et al. Phosphatidylinositol 3-kinase signalling is spatially organized at endosomal compartments by microtubule-associated protein 4. Nat Cell Biol 2020; 22: 1357- 1370.

[133]

Thapa N , Chen M , Cryns VL et al. A p85 isoform switch enhances PI3K activation on endosomes by a MAP4- and PI3P-dependent mechanism. Cell Rep 2024; 43: 114119.

[134]

Toulany M , Iida M , Lettau K et al. Targeting HER3-dependent activation of nuclear AKT improves radiotherapy of nonsmall cell lung cancer. Radiother Oncol 2022; 174: 92- 100.

[135]

Tran CS , Kersten J , Yan J et al. Phosphatidylinositol 4-kinase III alpha governs cytoskeletal organization for invasiveness of liver cancer cells. Gastroenterology 2024; 167: 522- 537.

[136]

Tribble EK , Ivanova PT , Grabon A et al. Quantitative profiling of the endonuclear glycerophospholipidome of murine embryonic fibroblasts. J Lipid Res 2016; 57: 1492- 1506.

[137]

Turner N , Moretti E , Siclari O et al. Targeting triple negative breast cancer: Is p53 the answer? Cancer Treat Rev 2013; 39: 541- 550.

[138]

Vallejo-Díaz J , Chagoyen M , Olazabal-Morán M et al. The opposing roles of PIK3R1/p85α and PIK3R2/p85β in cancer. Trends in Cancer 2019; 5: 233- 244.

[139]

Vara JAF , Casado E , de Castro J et al. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 2004; 30: 193- 204.

[140]

Vasko V , Saji M , Hardy E et al. Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J Med Genet 2004; 41: 161- 170.

[141]

Visnjic D , Crljen V , Curic J et al. The activation of nuclear phosphoinositide 3-kinase C2β in all-trans-retinoic aciddifferentiated HL-60 cells. FEBS Lett 2002; 529: 268- 274.

[142]

Wainstein E , Maik-Rachline G , Blenis J et al. AKTs do not translocate to the nucleus upon stimulation but AKT3 can constitutively signal from the nuclear envelope. Cell Rep 2022; 41: 111733.

[143]

Walerych D , Napoli M , Collavin L et al. The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis 2012; 33: 2007- 2017.

[144]

Walerych D , Lisek K , Del Sal G . Mutant p53: one, no one, and one hundred thousand. Front Oncol 2015; 5: 289.

[145]

Wang Y-H , Sheetz MP . When PIP2 meets p53: nuclear phosphoinositide signaling in the DNA damage response. Front Cell Dev Biol 2022; 10: 903994.

[146]

Wang Y , Helland A , Holm R et al. TP53 mutations in earlystage ovarian carcinoma, relation to long-term survival. Br J Cancer 2004a; 90: 678- 685.

[147]

Wang Y , Kringen P , Kristensen GB et al. Effect of the codon 72 polymorphism (c.215G>C, p.Arg72Pro) in combination with somatic sequence variants in the TP53 gene on survival in patients with advanced ovarian carcinoma. Hum Mutat 2004b; 24: 21- 34.

[148]

Wen T , Chen M , Cryns VL et al. Regulation of the poly(A) polymerase Star-PAP by a nuclear phosphoinositide signalosome. bioRxiv 2024: 2024.07.01.601467.

[149]

Wong LH , Gatta AT , Levine TP . Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes. Nat Rev Mol Cell Biol 2019; 20: 85- 101.

[150]

Xu R , Sen N , Paul BD et al. Inositol polyphosphate multikinase is a coactivator of p53-mediated transcription and cell death. Sci Signal 2013; 6: ra22.

[151]

Xue G , Hemmings BA . PKB/Akt-dependent regulation of cell motility. J Natl Cancer Inst 2013; 105: 393- 404.

[152]

Yang Y , Lee M , Fairn GD . Phospholipid subcellular localization and dynamics. J Biol Chem 2018; 293: 6230- 6240.

[153]

Yeudall WA , Wrighton KH , Deb S . Mutant p53 in cell adhesion and motility. Methods Mol Biol 2013; 962: 135- 146.

[154]

Yoeli-Lerner M , Yiu GK , Rabinovitz I et al. Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell 2005; 20: 539- 550.

[155]

Yoo SH , Huh YH , Huh SK et al. Localization and projected role of phosphatidylinositol 4-kinases IIα and IIβ in inositol 1,4,5-trisphosphate-sensitive nucleoplasmic Ca2+ store vesicles. Nucleus 2014; 5: 341- 351.

[156]

Yue X , Zhang C , Zhao Y et al. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression. Genes Dev 2017; 31: 1641- 1654.

[157]

Zhang X , Tang N , Hadden TJ et al. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 2011; 1813: 1978- 1986.

[158]

Zou J , Marjanovic J , Kisseleva MV et al. Type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase regulates stress-induced apoptosis. Proc Natl Acad Sci USA 2007; 104: 16834- 16839.

RIGHTS & PERMISSIONS

The Author(s). Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (13728KB)

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/