Single-nucleus transcriptomics decodes the link between aging and lumbar disc herniation

Min Wang , Zan He , Anqi Wang , Shuhui Sun , Jiaming Li , Feifei Liu , Chunde Li , Chengxian Yang , Jinghui Lei , Yan Yu , Shuai Ma , Si Wang , Weiqi Zhang , Zhengrong Yu , Guang-Hui Liu , Jing Qu

Protein Cell ›› 2025, Vol. 16 ›› Issue (8) : 667 -684.

PDF (55111KB)
Protein Cell ›› 2025, Vol. 16 ›› Issue (8) : 667 -684. DOI: 10.1093/procel/pwaf025
RESEARCH ARTICLE

Single-nucleus transcriptomics decodes the link between aging and lumbar disc herniation

Author information +
History +
PDF (55111KB)

Abstract

Lumbar disc (LD) herniation and aging are prevalent conditions that can result in substantial morbidity. This study aimed to clarify the mechanisms connecting the LD aging and herniation, particularly focusing on cellular senescence and molecular alterations in the nucleus pulposus (NP). We performed a detailed analysis of NP samples from a diverse cohort, including individuals of varying ages and those with diagnosed LD herniation. Our methodology combined histological assessments with single-nucleus RNA sequencing to identify phenotypic and molecular changes related to NP aging and herniation. We discovered that cellular senescence and a decrease in nucleus pulposus progenitor cells (NPPCs) are central to both processes. Additionally, we found an age-related increase in NFAT1 expression that promotes NPPC senescence and contributes to both aging and herniation of LD. This research offers fresh insights into LD aging and its associated pathologies, potentially guiding the development of new therapeutic strategies to target the root causes of LD herniation and aging.

Keywords

aging / herniation / nucleus pulposus / single-nucleus transcriptomics / NFAT1 / senescence

Cite this article

Download citation ▾
Min Wang, Zan He, Anqi Wang, Shuhui Sun, Jiaming Li, Feifei Liu, Chunde Li, Chengxian Yang, Jinghui Lei, Yan Yu, Shuai Ma, Si Wang, Weiqi Zhang, Zhengrong Yu, Guang-Hui Liu, Jing Qu. Single-nucleus transcriptomics decodes the link between aging and lumbar disc herniation. Protein Cell, 2025, 16(8): 667-684 DOI:10.1093/procel/pwaf025

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aging Biomarker Consortium; Bao H, Cao J, Chen M et al. Biomarkers of aging. Sci China Life Sci 2023a;66:893–1066.

[2]

Aging Biomarker Consortium; Suo J, Gan Y, Xie Y et al. A framework of biomarkers for skeletal aging: a consensus statement by the Aging Biomarker Consortium. Life Med. 2023b;2:lnad045.

[3]

Aibar S, Gonzalez-Blas CB, Moerman T et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods 2017;14:1083–1086.

[4]

Amin RM, Andrade NS, Neuman BJ. Lumbar disc herniation. Curr Rev Musculoskelet Med 2017;10:507–516.

[5]

Bhattarai P, Gunasekaran TI, Belloy ME et al. Rare genetic variation in fibronectin 1 (FN1) protects against APOEepsilon4 in Alzheimer’s disease. Acta Neuropathol 2024;147:70.

[6]

Boden SD, Davis DO, Dina TS et al. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am 1990;72:403–408.

[7]

Bonnemann CG. The collagen VI-related myopathies: muscle meets its matrix. Nat Rev Neurol 2011;7:379–390.

[8]

Cai Y, Song W, Li J et al. The landscape of aging. Sci China Life Sci 2022;65:2354–2454.

[9]

Chen Y, Tang L. Stem cell senescence: the obstacle of the treatment of degenerative disk disease. Curr Stem Cell Res Ther 2019;14:654–668.

[10]

Chen S, Fu P, Wu H et al. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell Tissue Res 2017;370:53–70.

[11]

Chen Y, Zhang L, Shi X et al. Characterization of the nucleus pulposus progenitor cells via spatial transcriptomics. Adv Sci (Weinh) 2024;11:e2303752.

[12]

Cherif H, Mannarino M, Pacis AS et al. Single-cell RNA-seq analysis of cells from degenerating and non-degenerating intervertebral discs from the same individual reveals new biomarkers for intervertebral disc degeneration. Int J Mol Sci 2022;23:3993.

[13]

Choi H, Johnson ZI, Risbud MV. Understanding nucleus pulposus cell phenotype: a prerequisite for stem cell based therapies to treat intervertebral disc degeneration. Curr Stem Cell Res Ther 2015;10:307–316.

[14]

Chou R. Low back pain. Ann Intern Med 2021;174:ITC113–ITC128.

[15]

Dammers R, Koehler PJ. Lumbar disc herniation: level increases with age. Surg Neurol 2002;58:209–212; discussion 212.

[16]

Deyo RA, Mirza SK. CLINICAL PRACTICE. Herniated lumbar intervertebral disk. N Engl J Med 2016;374:1763–1772.

[17]

Doudna JA. The promise and challenge of therapeutic genome editing. Nature 2020;578:229–236.

[18]

Fleming SJ, Chaffin MD, Arduini A et al. Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender. Nat Methods 2023;20:1323–1335.

[19]

Flowers SA, Zieba A, Ornros J et al. Lubricin binds cartilage proteins, cartilage oligomeric matrix protein, fibronectin and collagen II at the cartilage surface. Sci Rep 2017;7:13149.

[20]

Gan Y, He J, Zhu J et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021;9:37.

[21]

Gao B, Jiang B, Xing W et al. Discovery and application of postnatal nucleus pulposus progenitors essential for intervertebral disc homeostasis and degeneration. Adv Sci (Weinh) 2022;9:e2104888.

[22]

Greenblatt MB, Ritter SY, Wright J et al. NFATc1 and NFATc2 repress spontaneous osteoarthritis. Proc Natl Acad Sci U S A 2013;110:19914–19919.

[23]

Hao Y, Hao S, Andersen-Nissen E et al. Integrated analysis of multimodal single-cell data. Cell 2021;184:3573–3587. e29.

[24]

Hartvigsen J, Hancock MJ, Kongsted A et al; Lancet Low Back Pain Series Working Group. What low back pain is and why we need to pay attention. Lancet 2018;391:2356–2367.

[25]

Huang D, Zhao Q, Yang K et al. CRL2APPBP2-mediated TSPYL2 degradation counteracts human mesenchymal stem cell senescence. Sci China Life Sci 2024;67:460–474.

[26]

Humzah MD, Soames RW. Human intervertebral disc: struc-ture and function. Anat Rec 1988;220:337–356.

[27]

Hwang PY, Chen J, Jing L et al. The role of extracellular matrix elasticity and composition in regulating the nucleus pulposus cell phenotype in the intervertebral disc: a narrative review. J Biomech Eng 2014;136:021010.

[28]

Ito S, Nakashima H, Sato K et al. Laterality of lumbar disc herniation. J Orthop Sci 2023;28:1207–1213.

[29]

Jing Y, Zuo Y, Yu Y et al. Single-nucleus profiling unveils a geroprotective role of the FOXO3 in primate skeletal muscle aging. Protein Cell 2023;14:497–512.

[30]

Khodeer S, Era T. Identifying the biphasic role of Calcineurin/ NFAT signaling enables replacement of Sox2 in somatic cell reprogramming. Stem Cells 2017;35:1162–1175.

[31]

Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 2015;12:357–360.

[32]

Lama P, Claireaux H, Flower L et al. Physical disruption of intervertebral disc promotes cell clustering and a degenerative phenotype. Cell Death Discov 2019;5:154.

[33]

Li Y, Zhao T, Li J et al. Oxidative stress and 4-hydroxy-2-nonenal (4-HNE): implications in the pathogenesis and treatment of aging-related diseases. J Immunol Res 2022;2022:2233906.

[34]

Li H, Wu S, Li J et al. HALL: a comprehensive database for human aging and longevity studies. Nucleic Acids Res 2024a;52:D909–D918.

[35]

Li Y, Wu A, Jin X et al. DDO1002, an NRF2-KEAP1 inhibitor, improves hematopoietic stem cell aging and stress response. Life Med. 2024b;3:lnae043.

[36]

Liu GH, Suzuki K, Li M et al. Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun 2014;5:4330.

[37]

Liu X, Liu Z, Wu Z et al. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell 2023;186:287–304.e26.

[38]

Liu F, Lu Y, Wang X et al. Identification of FOXO1 as a geroprotector in human synovium through single-nucleus transcriptomic profiling. Protein Cell 2024;15:441–459.

[39]

Lopez-Otin C, Blasco MA, Partridge L et al. Hallmarks of aging: an expanding universe. Cell 2023;186:243–278.

[40]

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.

[41]

Lu Z, Zheng Z. Integrated analysis of single-cell and bulk RNA sequencing data identifies the characteristics of ferroptosis in lumbar disc herniation. Funct Integr Genomics 2023;23:289.

[42]

Lu H, Jing Y, Zhang C et al. Aging hallmarks of the primate ovary revealed by spatiotemporal transcriptomics. Protein Cell 2024;15:364–384.

[43]

Lv FJ, Peng Y, Lim FL et al. Matrix metalloproteinase 12 is an indicator of intervertebral disc degeneration co-expressed with fibrotic markers. Osteoarthritis Cartilage 2016;24:1826–1836.

[44]

Lyu FJ, Cheung KM, Zheng Z et al. IVD progenitor cells: a new horizon for understanding disc homeostasis and repair. Nat Rev Rheumatol 2019;15:102–112.

[45]

Ma S, Sun S, Geng L et al. Caloric restriction reprograms the single-cell transcriptional landscape of rattus norvegicus aging. Cell 2020;180:984–1001.e22.

[46]

Ma S, Chi X, Cai Y et al. Decoding aging hallmarks at the single-cell level. Annu Rev Biomed Data Sci 2023;6:129–152.

[47]

Ma S, Ji Z, Zhang B et al. Spatial transcriptomic landscape unveils immunoglobin-associated senescence as a hallmark of aging. Cell 2024;187:7025–7044.e34.

[48]

Martinez GJ, Pereira RM, Aijo T et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 2015;42:265–278.

[49]

McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 2019;8:329–337.e4.

[50]

Mohd Isa IL, Teoh SL, Mohd Nor NH et al. Discogenic low back pain: anatomy, pathophysiology and treatments of intervertebral disc degeneration. Int J Mol Sci 2022;24:208.

[51]

Novak R, Ahmad YA, Timaner M et al. RNF4∼RGMb∼BMP6 axis required for osteogenic differentiation and cancer cell survival. Cell Death Dis 2022;13:820.

[52]

Otani Y, Schol J, Sakai D et al. Assessment of Tie2-rejuvenated nucleus pulposus cell transplants from young and old patient sources demonstrates that age still matters. Int J Mol Sci 2024;25:8335.

[53]

Peng Y, Ding L, Xiao Z et al. Ethical concerns in aging research: perspectives of global frontline researchers. Sci China Life Sci 2024;67:2149–2156.

[54]

Pfirrmann CW, Metzdorf A, Zanetti M et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 2001;26:1873–1878.

[55]

Qiu X, Mao Q, Tang Y et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 2017;14:979–982.

[56]

Raj PP. Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract 2008;8:18–44.

[57]

Ranger AM, Gerstenfeld LC, Wang J et al. The nuclear factor of activated T cells (NFAT) transcription factor NFATp (NFATc2) is a repressor of chondrogenesis. J Exp Med 2000;191:9–22.

[58]

Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 1997;15:707–747.

[59]

Roberts S, Evans H, Trivedi J et al. Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 2006;88:10–14.

[60]

Roughley PJ, Alini M, Antoniou J. The role of proteoglycans in aging, degeneration and repair of the intervertebral disc. Biochem Soc Trans 2002;30:869–874.

[61]

Sakai D, Nakamura Y, Nakai T et al. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun 2012;3:1264.

[62]

Sun S, Li J, Wang S et al. CHIT1-positive microglia drive motor neuron ageing in the primate spinal cord. Nature 2023;624:611–620.

[63]

Swahn H, Mertens J, Olmer M et al. Shared and compartment-specific processes in nucleus pulposus and annulus fibrosus during intervertebral disc degeneration. Adv Sci (Weinh) 2024;11:e2309032.

[64]

Tan Z, Chen P, Dong X et al. Progenitor-like cells contributing to cellular heterogeneity in the nucleus pulposus are lost in intervertebral disc degeneration. Cell Rep 2024;43:114342.

[65]

Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 2015;17:11–22.

[66]

Tu J, Li W, Yang S et al. Single-cell transcriptome profiling reveals multicellular ecosystem of nucleus pulposus during degeneration progression. Adv Sci (Weinh) 2022;9:e2103631.

[67]

Vo NV, Hartman RA, Patil PR et al. Molecular mechanisms of biological aging in intervertebral discs. J Orthop Res 2016;34:1289–1306.

[68]

Wang F, Cai F, Shi R et al. Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration. Osteoarthritis Cartilage 2016;24:398–408.

[69]

Wang S, Zheng Y, Li J et al. Single-cell transcriptomic atlas of primate ovarian aging. Cell 2020a;180:585–600.e19.

[70]

Wang T, Zhang C, Wu C et al. miR-765 inhibits the osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting BMP6 via regulating the BMP6/Smad1/5/9 signaling pathway. Stem Cell Res Ther 2020b;11:62.

[71]

Wang D, Li Z, Huang W et al. Single-cell transcriptomics reveals heterogeneity and intercellular crosstalk in human intervertebral disc degeneration. iScience 2023;26:106692.

[72]

Wong T, Patel A, Golub D et al. Prevalence of long-term low back pain after symptomatic lumbar disc herniation. World Neurosurg 2023;170:163–173.e1.

[73]

Wu T, Hu E, Xu S et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb) 2021;2:100141.

[74]

Wu Z, Qu J, Liu GH. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat Rev Mol Cell Biol 2024a;25:979–1000.

[75]

Wu Z, Qu J, Zhang W et al. Stress, epigenetics, and aging: Unraveling the intricate crosstalk. Mol Cell 2024b;84:34–54.

[76]

Xanthoudakis S, Viola JP, Shaw KT et al. An enhanced immune response in mice lacking the transcription factor NFAT1. Science 1996;272:892–895.

[77]

Xu G, Geng X, Yang F et al. FBLN1 promotes chondrocyte proliferation by increasing phosphorylation of Smad2. J Orthop Sci 2022;27:242–248.

[78]

Yang F, Leung VY, Luk KD et al. Injury-induced sequential transformation of notochordal nucleus pulposus to chondrogenic and fibrocartilaginous phenotype in the mouse. J Pathol 2009;218:113–121.

[79]

Yang F, Wang Y, Wang Q et al. Efficient repair of human genetic defect by CRISPR/Cas9-mediated interlocus gene conversion. Life Med. 2023;2:lnad042.

[80]

Yang S, Liu C, Jiang M et al. A single-nucleus transcriptomic atlas of primate liver aging uncovers the pro-senescence role of SREBP2 in hepatocytes. Protein Cell 2024a;15:98–120.

[81]

Yang Y, Lu X, Liu N et al. Metformin decelerates aging clock in male monkeys. Cell 2024b;187:6358–6378.e29.

[82]

Yang Y, Wen H, Li Y et al. Cellular senescence induced by down-regulation of PTBP1 correlates with exon skipping of mitochondrial-related gene NDUFV3. Life Med. 2024c;3:lnae021.

[83]

Ye F, Lyu FJ, Wang H et al. The involvement of immune system in intervertebral disc herniation and degeneration. JOR Spine 2022;5:e1196.

[84]

Ye J, Yan L, Yuan Y et al. Natural flavonoid glycosides Chrysosplenosides I & A rejuvenate intestinal stem cell aging via activation of PPARgamma signaling. Life Med. 2024;3:lnae025.

[85]

Zanotti S, Canalis E. Activation of Nfatc2 in osteoblasts causes osteopenia. J Cell Physiol 2015;230:1689–1695.

[86]

Zhang W, Wan H, Feng G et al. SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 2018;560:661–665.

[87]

Zhang H, Li J, Ren J et al. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell 2021;12:695–716.

[88]

Zhang AS, Xu A, Ansari K et al. Lumbar disc herniation: diagnosis and management. Am J Med 2023a;136:645–651.

[89]

Zhang Y, Zheng Y, Wang S et al. Single-nucleus transcriptomics reveals a gatekeeper role for FOXP1 in primate cardiac aging. Protein Cell 2023b;14:279–293.

[90]

Zhang L, Wang Z, Zhang Y et al. Regulatory cellular and molecular networks in the bone microenvironment during aging. Life Med. 2024;3:lnae019.

[91]

Zhou Y, Zhou B, Pache L et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019;10:1523.

[92]

Zhu F, Nie G, Liu C. Engineered biomaterials in stem cell-based regenerative medicine. Life Med. 2023;2:lnad027.

RIGHTS & PERMISSIONS

The Author(s) 2025. Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (55111KB)

356

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/