MultiKano: an automatic cell type annotation tool for single-cell multi-omics data based on Kolmogorov–Arnold network and data augmentation

Siyu Li , Xinhao Zhuang , Songbo Jia , Songming Tang , Liming Yan , Heyang Hua , Yuhang Jia , Xuelin Zhang , Yan Zhang , Qingzhu Yang , Shengquan Chen

Protein Cell ›› 2025, Vol. 16 ›› Issue (5) : 374 -380.

PDF (730KB)
Protein Cell ›› 2025, Vol. 16 ›› Issue (5) : 374 -380. DOI: 10.1093/procel/pwae069
LETTER

MultiKano: an automatic cell type annotation tool for single-cell multi-omics data based on Kolmogorov–Arnold network and data augmentation

Author information +
History +
PDF (730KB)

Cite this article

Download citation ▾
Siyu Li, Xinhao Zhuang, Songbo Jia, Songming Tang, Liming Yan, Heyang Hua, Yuhang Jia, Xuelin Zhang, Yan Zhang, Qingzhu Yang, Shengquan Chen. MultiKano: an automatic cell type annotation tool for single-cell multi-omics data based on Kolmogorov–Arnold network and data augmentation. Protein Cell, 2025, 16(5): 374-380 DOI:10.1093/procel/pwae069

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdelaal T, Michielsen L, Cats D et al. A comparison of automatic cell identification methods for single-cell RNA sequencing data. Genome Biol 2019;20:1–19.

[2]

Alquicira-Hernandez J, Sathe A, Ji HP et al. scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data. Genome Biol 2019;20:1–17.

[3]

Cao J, Cusanovich DA, Ramani V et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 2018;361:1380–1385.

[4]

Cao J, Spielmann M, Qiu X et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 2019;566:496–502.

[5]

Chen S, Lake BB, Zhang K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat Biotechnol 2019;37:1452–1457.

[6]

Chen X, Chen S, Song S et al. Cell type annotation of single-cell chromatin accessibility data via supervised Bayesian embedding. Nat Mach Intell 2022;4:116–126.

[7]

Chen J, Xu H, Tao W et al. Transformer for one stop interpretable cell type annotation. Nat Commun 2023;14:223.

[8]

El-Domyati M, Attia S, Saleh F et al. Evaluation of apoptosis regulatory markers in androgenetic alopecia. J Cosmet Dermatol 2010;9:267–275.

[9]

Kossard S. Keratoacanthoma, committed stem cells and neoplastic aberrant infundibulogenesis integral to formulating a conceptual model for an infundibulocystic pathway to squamous cell carcinoma. J Cutan Pathol 2021;48:184–191.

[10]

Liu Z, Wang Y, Vaidya S et al. Kan: Kolmogorov–Arnold networks. arXiv preprint arXiv:2404.19756 2024.

[11]

Luecken MD, Burkhardt DB, Cannoodt R et al. A sandbox for prediction and integration of DNA, RNA, and proteins in single cells. In: Thirty-Fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[12]

Ma S, Zhang B, LaFave LM et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 2020;183:1103–1116.e20.

[13]

Ma W, Su K, Wu H. Evaluation of some aspects in supervised cell type identification for single-cell RNA-seq: classifier, feature selection, and reference construction. Genome Biol 2021;22:1–23.

[14]

Schneider MR, Paus R. Deciphering the functions of the hair follicle infundibulum in skin physiology and disease. Cell Tissue Res 2014;358:697–704.

[15]

Zeng Y, Luo M, Shangguan N et al. Deciphering cell types by integrating scATAC-seq data with genome sequences. Nat Comput Sci 2024;4:285–298.

RIGHTS & PERMISSIONS

The Author(s) 2024. Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (730KB)

Supplementary files

Supplementary materials

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/