Investigating regional-specific gut microbial distribution: an uncharted territory in disease therapeutics

Junliang Kuang , Xiaojiao Zheng , Wei Jia

Protein Cell ›› 2025, Vol. 16 ›› Issue (8) : 623 -640.

PDF (6563KB)
Protein Cell ›› 2025, Vol. 16 ›› Issue (8) : 623 -640. DOI: 10.1093/procel/pwae058
PERSPECTIVE

Investigating regional-specific gut microbial distribution: an uncharted territory in disease therapeutics

Author information +
History +
PDF (6563KB)

Cite this article

Download citation ▾
Junliang Kuang, Xiaojiao Zheng, Wei Jia. Investigating regional-specific gut microbial distribution: an uncharted territory in disease therapeutics. Protein Cell, 2025, 16(8): 623-640 DOI:10.1093/procel/pwae058

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abadie V, Sollid LM, Barreiro LB et al. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu Rev Immunol 2011;29:493–525.

[2]

Adachi R, Honma Y, Masuno H et al. Selective activation of vitamin D receptor by lithocholic acid acetate, a bile acid derivative. J Lipid Res 2005;46:46–57.

[3]

Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 2018;23:716–724.

[4]

Ahlman H, Nilsson O. The gut as the largest endocrine organ in the body. Ann Oncol 2001;12 Suppl 2:S63–S68.

[5]

Ahmad TR, Haeusler RA. Bile acids in glucose metabolism and insulin signalling — mechanisms and research needs. Nat Rev Endocrinol 2019;15:701–712.

[6]

Ahmed S, Macfarlane GT, Fite A et al. Mucosa-associated bacterial diversity in relation to human terminal ileum and colonic biopsy samples. Appl Environ Microbiol 2007;73:7435–7442.

[7]

Albaugh VL, Banan B, Antoun J et al. Role of bile acids and GLP-1 in mediating the metabolic improvements of bariatric surgery. Gastroenterology 2019;156:1041–1051.e4.

[8]

Allesøe RL, Lundgaard AT, Hernández Medina R et al. Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models. Nat Biotechnol 2023;41:399–408.

[9]

An C, Chon H, Ku W et al. Bile acids: major regulator of the gut microbiome. Microorganisms 2022;10:1792.

[10]

Angelakis E, Armougom F, Carrière F et al. A metagenomic investigation of the duodenal microbiota reveals links with obesity. PLoS One 2015;10:e0137784.

[11]

Atarashi K, Suda W, Luo C et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 2017;358:359–365.

[12]

Atreya R, Siegmund B. Location is important: differentiation between ileal and colonic Crohn’s disease. Nat Rev Gastroenterol Hepatol 2021;18:544–558.

[13]

Baker JL, Mark Welch JL, Kauffman KM et al. The oral microbiome: diversity, biogeography and human health. Nat Rev Microbiol 2024;22:89–104.

[14]

Barcik W, Wawrzyniak M, Akdis CA et al. Immune regulation by histamine and histamine-secreting bacteria. Curr Opin Immunol 2017;48:108–113.

[15]

Blekhman R, Goodrich JK, Huang K et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol 2015;16:191.

[16]

Bogatyrev SR, Rolando JC, Ismagilov RF. Self-reinoculation with fecal flora changes microbiota density and composition leading to an altered bile-acid profile in the mouse small intestine. Microbiome 2020;8:19.

[17]

Booijink CCGM, El-Aidy S, Rajilić-Stojanović M et al. High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol 2010;12:3213–3227.

[18]

Buergel T, Steinfeldt J, Ruyoga G et al. Metabolomic profiles predict individual multidisease outcomes. Nat Med 2022;28:2309–2320.

[19]

Bushyhead D, Quigley EMM. Small intestinal bacterial overgrowth-pathophysiology and its implications for definition and management. Gastroenterology 2022;163:593–607.

[20]

Caminero A, Galipeau HJ, Mccarville JL et al. Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology 2016;151:670–683.

[21]

Canfora EE, Meex RCR, Venema K et al. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol 2019;15:261–273.

[22]

Cani PD, Amar J, Iglesias MA et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761–1772.

[23]

Chaudhari SN, Harris DA, Aliakbarian H et al. Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects. Nat Chem Biol 2021;17:20–29.

[24]

Chen B, Sun L, Zeng G et al. Gut bacteria alleviate smoking-related NASH by degrading gut nicotine. Nature 2022;610:562–568.

[25]

Constante M, Libertucci J, Galipeau HJ et al. Biogeographic variation and functional pathways of the gut microbiota in celiac disease. Gastroenterology 2022;163:1351–1363.e15.

[26]

Dang JT, Mocanu V, Park H et al. Ileal microbial shifts after Roux-en-Y gastric bypass orchestrate changes in glucose metabolism through modulation of bile acids and L-cell adaptation. Sci Rep 2021;11:23813.

[27]

Dantas Machado AC, Brown SD, Lingaraju A et al. Diet and feeding pattern modulate diurnal dynamics of the ileal microbiome and transcriptome. Cell Reports 2022;40:111008.

[28]

Darra A, Singh V, Jena A et al. Hyperglycemia is associated with duodenal dysbiosis and altered duodenal microenvironment. Sci Rep 2023;13:11038.

[29]

Debédat J, Le Roy T, Voland L et al. The human gut microbiota contributes to type-2 diabetes non-resolution 5-years after Roux-en-Y gastric bypass. Gut Microbes 2022;14:2050635.

[30]

Devi TB, Devadas K, George M et al. Low bifidobacterium abundance in the lower gut microbiota is associated with helicobacter pylori-related gastric ulcer and gastric cancer. Front Microbiol 2021;12:631140.

[31]

Devlin AS, Fischbach MA. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat Chem Biol 2015;11:685–690.

[32]

Devlin AS, Marcobal A, Dodd D et al. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota. Cell Host Microbe 2016;20:709–715.

[33]

De Vos WM, Tilg H, Van Hul M et al. Gut microbiome and health: mechanistic insights. Gut 2022;71:1020–1032.

[34]

Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 2016;14:20–32.

[35]

El Aidy S, Van den Bogert B, Kleerebezem M. The small intestine microbiota, nutritional modulation and relevance for health. Curr Opin Biotechnol 2015;32:14–20.

[36]

El-Mir MY, Badia MD, Luengo N et al. Increased levels of typically fetal bile acid species in patients with hepatocellular carcinoma. Clin Sci (Lond) 2001;100:499–508.

[37]

Ermund A, Schütte A, Johansson MEV et al. Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer’s patches. Am J Physiol Gastrointest Liver Physiol 2013;305:G341–G347.

[38]

Evans DF, Pye G, Bramley R et al. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 1988;29:1035–1041.

[39]

Filardo S, Scalese G, Virili C et al. The potential role of hypochlorhydria in the development of duodenal dysbiosis: a preliminary report. Front Cell Infect Microbiol 2022;12:854904.

[40]

Fiorucci S, Distrutti E, Carino A et al. Bile acids and their receptors in metabolic disorders. Prog Lipid Res 2021;82:101094.

[41]

Flint HJ, Scott KP, Louis P et al. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 2012;9:577–589.

[42]

Flint HJ, Duncan SH, Scott KP et al. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 2015;74:13–22.

[43]

Folz J, Culver RN, Morales JM et al. Human metabolome variation along the upper intestinal tract. Nat Metab 2023;5:777–788.

[44]

Fouladi F, Brooks AE, Fodor AA et al. The role of the gut microbiota in sustained weight loss following Roux-en-Y gastric bypass surgery. Obes Surg 2019;29:1259–1267.

[45]

Frazier K, Kambal A, Zale EA et al. High-fat diet disrupts REG3γ and gut microbial rhythms promoting metabolic dysfunction. Cell Host Microbe 2022;30:809–823.

[46]

Funabashi M, Grove TL, Wang M et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 2020;582:566–570.

[47]

Fung TC, Vuong HE, Luna CDG et al. Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut. Nat Microbiol 2019;4:2064–2073.

[48]

Furuichi M, Kawaguchi T, Pust M-M et al. Commensal consortia decolonize Enterobacteriaceae via ecological control. Nature 2024;633:878–886.

[49]

Gatarek P, Kaluzna-Czaplinska J. Trimethylamine N-oxide (TMAO) in human health. Excli J 2021;20:301–319.

[50]

Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 2013;3:14–24.

[51]

Ghosh S, Rubino F, Wismann P et al. Westernized diet–induced insulin resistance in mice is associated with focal duodenal hyperplasia. Diabetes 2018;67:1900.

[52]

Gniuli D, Calcagno A, Dalla Libera L et al. High-fat feeding stimulates endocrine, glucose-dependent insulinotropic polypeptide (GIP)-expressing cell hyperplasia in the duodenum of Wistar rats. Diabetologia 2010;53:2233–2240.

[53]

Gomari DP, Schweickart A, Cerchietti L et al. Variational autoencoders learn transferrable representations of metabolomics data. Commun Biol 2022;5:645.

[54]

Gonzalez FJ, Jiang C, Patterson AD. An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease. Gastroenterology 2016;151:845–859.

[55]

Gudan A, Jamioł-Milc D, Hawryłkowicz V et al. The prevalence of small intestinal bacterial overgrowth in patients with non-alcoholic liver diseases: NAFLD, NASH, fibrosis, cirrhosis-A systematic review, meta-analysis and meta-regression. Nutrients 2022;14:5261.

[56]

Hayashi H, Takahashi R, Nishi T et al. Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 2005;54:1093–1101.

[57]

Heinken A, Ravcheev DA, Baldini F et al. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome 2019;7:75.

[58]

Hernández Medina R, Kutuzova S, Nielsen KN et al. Machine learning and deep learning applications in microbiome research. ISME Commun 2022;2:98.

[59]

Hui W, Li T, Liu W et al. Fecal microbiota transplantation for treatment of recurrent C. difficile infection: an updated randomized controlled trial meta-analysis. PLoS One 2019;14:e0210016.

[60]

Hunt RH, Camilleri M, Crowe SE et al. The stomach in health and disease. Gut 2015;64:1650–1668.

[61]

Ianiro G, Maida M, Burisch J et al. Efficacy of different faecal microbiota transplantation protocols for Clostridium difficile infection: a systematic review and meta-analysis. United Eur Gastroenterol J 2018;6:1232–1244.

[62]

Ierardi E, Losurdo G, Sorrentino C et al. Macronutrient intakes in obese subjects with or without small intestinal bacterial overgrowth: an alimentary survey. Scand J Gastroenterol 2016;51:277–280.

[63]

Imhann F, Vich Vila A, Bonder MJ et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 2018;67:108–119.

[64]

Inagaki T, Choi M, Moschetta A et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005;2:217–225.

[65]

Ishizawa M, Akagi D, Makishima M. Lithocholic acid is a Vitamin D receptor ligand that acts preferentially in the ileum. Int J Mol Sci 2018;19:1975.

[66]

Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 2018;15:111–128.

[67]

Jin D, Huang K, Xu M et al. Deoxycholic acid induces gastric intestinal metaplasia by activating STAT3 signaling and disturbing gastric bile acids metabolism and microbiota. Gut Microbes 2022a;14:2120744.

[68]

Jin W-B, Li T-T, Huo D et al. Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome. Cell 2022b;185:547–562.e22.

[69]

Kałużna-Czaplińska J, Gątarek P, Chirumbolo S et al. How important is tryptophan in human health? Crit Rev Food Sci Nutr 2019;59:72–88.

[70]

Kastl AJ, Terry NA, Wu GD et al. The structure and function of the human small intestinal microbiota: current understanding and future directions. Cell Mol Gastroenterol Hepatol 2020;9:33–45.

[71]

Kaźmierczak-Siedlecka K, Daca A, Roviello G et al. Interdisciplinary insights into the link between gut microbiome and gastric carcinogenesis-what is currently known? Gastric Cancer 2022;25:1–10.

[72]

Kirwan JP, Courcoulas AP, Cummings DE et al. Diabetes remission in the Alliance of Randomized Trials of Medicine Versus Metabolic Surgery in Type 2 Diabetes (ARMMST2D). Diabetes Care 2022;45:1574–1583.

[73]

Koh A, De Vadder F, Kovatcheva-Datchary P et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016;165:1332–1345.

[74]

Koh A, Molinaro A, Ståhlman M et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 2018;175:947–961.e17.

[75]

Kuang J, Wang J, Li Y et al. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell Metab 2023;35:1752–1766.e8.

[76]

Kunath BJ, Hickl O, Queirós P et al. Alterations of oral microbiota and impact on the gut microbiome in type 1 diabetes mellitus revealed by integrated multi-omic analyses. Microbiome 2022;10:243.

[77]

Leite G, Pimentel M, Barlow GM et al. Age and the aging process significantly alter the small bowel microbiome. Cell Reports 2021;36:109765.

[78]

Leite G, Rezaie A, Mathur R et al. Defining small intestinal bacterial overgrowth by culture and high throughput sequencing. Clin Gastroenterol Hepatol 2023;22:259–270.

[79]

Leonard MM, Valitutti F, Karathia H et al. Microbiome signatures of progression toward celiac disease onset in at-risk children in a longitudinal prospective cohort study. Proc Natl Acad Sci USA 2021;118:e2020322118.

[80]

Li T, Guo H, Li H et al. MicroRNA-92a-1-5p increases CDX2 by targeting FOXD1 in bile acids-induced gastric intestinal metaplasia. Gut 2019;68:1751–1763.

[81]

Li N, Zuo B, Huang S et al. Spatial heterogeneity of bacterial colonization across different gut segments following inter-species microbiota transplantation. Microbiome 2020;8:161.

[82]

Liou AP, Paziuk M, Luevano J-M et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 2013;5:178ra41.

[83]

Liu C, Du M-X, Xie L-S et al. Gut commensal Christensenella minuta modulates host metabolism via acylated secondary bile acids. Nat Microbiol 2024;9:434–450.

[84]

Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 2014;12:661–672.

[85]

Lu R, Zhang Y-G, Xia Y et al. Paneth cell alertness to pathogens maintained by Vitamin D receptors. Gastroenterology 2021;160:1269–1283.

[86]

Maccioni L, Gao B, Leclercq S et al. Intestinal permeability, microbial translocation, changes in duodenal and fecal microbiota, and their associations with alcoholic liver disease progression in humans. Gut Microbes 2020;12:1782157.

[87]

Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc 2003;62:67–72.

[88]

Madsen D, Beaver M, Chang L et al. Analysis of bile acids in conventional and germfree rats. J Lipid Res 1976;17:107–111.

[89]

Maini Rekdal V, Bess EN, Bisanz JE et al. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 2019;364:eaau6323.

[90]

Makishima M, Lu TT, Xie W et al. Vitamin D receptor as an intestinal bile acid sensor. Science 2002;296:1313–1316.

[91]

Makki K, Brolin H, Petersen N et al. 6α-hydroxylated bile acids mediate TGR5 signalling to improve glucose metabolism upon dietary fiber supplementation in mice. Gut 2023;72:314–324.

[92]

Marteau P, Pochart P, Doré J et al. Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 2001; 67:4939–4942.

[93]

Martinez-Guryn K, Hubert N, Frazier K et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 2018;23:458–469.

[94]

Martinez-Guryn K, Leone V, Chang EB. Regional diversity of the gastrointestinal microbiome. Cell Host Microbe 2019;26:314–324.

[95]

Mcgavigan AK, Garibay D, Henseler ZM et al. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut 2017;66:226–234.

[96]

Michel-Mata S, Wang X-W, Liu Y-Y et al. Predicting microbiome compositions from species assemblages through deep learning. IMeta 2022;1:e3.

[97]

Miele L, Valenza V, La Torre G et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009;49:1877–1887.

[98]

Mingrone G, Panunzi S, De Gaetano A et al. Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes:10-year follow-up of an open-label, single-centre, randomised controlled trial. Lancet 2021;397:293–304.

[99]

Mingrone G, van Baar AC, Devière J et al. Safety and efficacy of hydrothermal duodenal mucosal resurfacing in patients with type 2 diabetes: the randomised, double-blind, sham-controlled, multicentre REVITA-2 feasibility trial. Gut 2022;71:254–264.

[100]

Mohanty I, Allaband C, Mannochio-Russo H et al. The changing metabolic landscape of bile acids -keys to metabolism and immune regulation. Nat Rev Gastroenterol Hepatol 2024a;21:493–516.

[101]

Mohanty I, Mannochio-Russo H, Schweer JV et al. The under-appreciated diversity of bile acid modifications. Cell 2024b;187:1801–1818.e20.

[102]

Myronovych A, Bhattacharjee J, Salazar-Gonzalez R-M et al. Assessment of the role of FGF15 in mediating the metabolic outcomes of murine Vertical Sleeve Gastrectomy (VSG). Am J Physiol Gastrointest Liver Physiol 2020;319:G669–G684.

[103]

Nguyen NQ, Debreceni TL, Bambrick JE et al. Accelerated intestinal glucose absorption in morbidly obese humans: relationship to glucose transporters, incretin hormones, and glycemia. J Clin Endocrinol Metab 2015;100:968–976.

[104]

Nie Q, Luo X, Wang K et al. Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway. Cell 2024;187:2717–2734.e33.

[105]

Nissen JN, Johansen J, Allesøe RL et al. Improved metagenome binning and assembly using deep variational autoencoders. Nat Biotechnol 2021;39:555–560.

[106]

Noto JM, Piazuelo MB, Shah SC et al. Iron deficiency linked to altered bile acid metabolism promotes Helicobacter pylori-induced inflammation-driven gastric carcinogenesis. J Clin Invest 2022;132:e147822.

[107]

Patti M-E, Houten SM, Bianco AC et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring) 2009;17:1671–1677.

[108]

Peng X, Cheng L, You Y et al. Oral microbiota in human systematic diseases. Int J Oral Sci 2022;14:14.

[109]

Pereira FC, Berry D. Microbial nutrient niches in the gut. Environ Microbiol 2017;19:1366–1378.

[110]

Peters TJ. Intestinal peptidases. Gut 1970;11:720–725.

[111]

Pols TWH, Noriega LG, Nomura M et al. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 2011;54:1263–1272.

[112]

Porcari S, Benech N, Valles-Colomer M et al. Key determinants of success in fecal microbiota transplantation: from microbiome to clinic. Cell Host Microbe 2023;31:712–733.

[113]

Quinn RA, Melnik AV, Vrbanac A et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 2020;579:123–129.

[114]

Quraishi MN, Widlak M, Bhala N et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment Pharmacol Ther 2017;46:479–493.

[115]

Rajilic-Stojanovic M, Figueiredo C, Smet A et al. Systematic review: gastric microbiota in health and disease. Aliment Pharmacol Ther 2020;51:582–602.

[116]

Read E, Curtis MA, Neves JF. The role of oral bacteria in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2021;18:731–742.

[117]

Ridlon JM, Bajaj JS. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics. Acta Pharm Sin B 2015;5:99–105.

[118]

Ridlon JM, Gaskins HR. Another renaissance for bile acid gastrointestinal microbiology. Nat Rev Gastroenterol Hepatol 2024;21:348–364.

[119]

Ridlon JM, Harris SC, Bhowmik S et al. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016a;7:22–39.

[120]

Ridlon JM, Wolf PG, Gaskins HR. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes 2016b;7:201–215.

[121]

Rimal B, Collins SL, Tanes CE et al. Bile salt hydrolase catalyses formation of amine-conjugated bile acids. Nature 2024;626:859–863.

[122]

Roenneberg T, Merrow M. The circadian clock and human health. Curr Biol 2016;26:R432–R443.

[123]

Roland BC, Lee D, Miller LS et al. Obesity increases the risk of small intestinal bacterial overgrowth (SIBO). Neurogastroenterol Motility 2018;30:e13199.

[124]

Rubino F, Forgione A, Cummings DE et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg 2006;244:741–749.

[125]

Ruigrok RAAA, Collij V, Sureda P et al. The composition and metabolic potential of the human small intestinal microbiota within the context of Inflammatory Bowel Disease. J Crohns Colitis 2021;15:1326–1338.

[126]

Ryan KK, Tremaroli V, Clemmensen C et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 2014;509:183–188.

[127]

Ryder REJ, Laubner K, Benes M et al. Endoscopic Duodenal-Jejunal bypass liner treatment for Type 2 diabetes and obesity: glycemic and cardiovascular disease risk factor improvements in 1,022 patients treated worldwide. Diabetes Care 2023;46:e89–e91.

[128]

Sato Y, Atarashi K, Plichta DR et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 2021;599:458–464.

[129]

Schauer PR, Bhatt DL, Kirwan JP et al. Bariatric surgery versus intensive medical therapy for diabetes -5-year outcomes. N Engl J Med 2017;376:641–651.

[130]

Schugar RC, Gliniak CM, Osborn LJ et al. Gut microbe-targeted choline trimethylamine lyase inhibition improves obesity via rewiring of host circadian rhythms. eLife 2022;11:e63998.

[131]

Seekatz AM, Schnizlein MK, Koenigsknecht MJ et al. Spatial and temporal analysis of the stomach and small-intestinal microbiota in fasted healthy humans. MSphere 2019;4:e00126-19.

[132]

Shalon D, Culver RN, Grembi JA et al. Profiling the human intestinal environment under physiological conditions. Nature 2023;617:581–591.

[133]

Shanahan ER, Zhong L, Talley NJ et al. Characterisation of the gastrointestinal mucosa-associated microbiota: a novel technique to prevent cross-contamination during endoscopic procedures. Aliment Pharmacol Ther 2016;43:1186–1196.

[134]

Shanahan ER, Kang S, Staudacher H et al. Alterations to the duodenal microbiota are linked to gastric emptying and symptoms in functional dyspepsia. Gut 2023;72:929–938.

[135]

She J-J, Liu W-X, Ding X-M et al. Defining the biogeographical map and potential bacterial translocation of microbiome in human ‘surface organs’. Nat Commun 2024;15:427.

[136]

Simon GL, Gorbach SL. Intestinal flora in health and disease. Gastroenterology 1984;86:174–193.

[137]

Skrzydło-Radomańska B, Cukrowska B. How to recognize and treat small intestinal bacterial overgrowth? J Clin Med 2022;11:6017.

[138]

Sommer F, Bäckhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 2013;11:227–238.

[139]

Song X, Sun X, Oh SF et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 2020;577:410–415.

[140]

Song I, Gotoh Y, Ogura Y et al. Comparative genomic and physiological analysis against Clostridium scindens reveals Eubacterium sp. c-25 as an atypical deoxycholic acid producer of the human gut microbiota. Microorganisms 2021;9:2254.

[141]

Sorbara MT, Pamer EG. Microbiome-based therapeutics. Nat Rev Microbiol 2022;20:365–380.

[142]

Sroka-Oleksiak A, Młodzińska A, Bulanda M et al. Metagenomic analysis of duodenal microbiota reveals a potential biomarker of dysbiosis in the course of obesity and type 2 diabetes: a pilot study. J Clin Med 2020;9:369.

[143]

Strathdee SA, Hatfull GF, Mutalik VK et al. Phage therapy: from biological mechanisms to future directions. Cell 2023;186:17–31.

[144]

Subramaniam S, Fletcher C. Trimethylamine N-oxide: breathe new life. Br J Pharmacol 2018;175:1344–1353.

[145]

Sun M, Wu W, Liu Z et al. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol 2017;52:1–8.

[146]

Sun L, Cai J, Gonzalez FJ. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol 2021;18:335–347.

[147]

Sun Y, Zhang W, Gu J et al. Magnetically driven capsules with multimodal response and multifunctionality for biomedical applications. Nat Commun 2024;15:1839.

[148]

Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 2017;18:164–179.

[149]

Thaiss CA, Zeevi D, Levy M et al. A day in the life of the meta-organism: diurnal rhythms of the intestinal microbiome and its host. Gut Microbes 2015;6:137–142.

[150]

Thaiss CA, Levy M, Korem T et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 2016;167:1495–1510.e12.

[151]

Tolhurst G, Heffron H, Lam YS et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012;61:364–371.

[152]

Tomioka S, Seki N, Sugiura Y et al. Cooperative action of gut-microbiota-accessible carbohydrates improves host metabolic function. Cell Reports 2022;40:111087.

[153]

Treherne JE. Gut absorption. Annu Rev Entomol 1967;12:43–58.

[154]

Tropini C, Earle KA, Huang KC et al. The gut microbiome: connecting spatial organization to function. Cell Host Microbe 2017;21:433–442.

[155]

Tuganbaev T, Mor U, Bashiardes S et al. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis. Cell 2020;182:1441–1459.e21.

[156]

van Baar ACG, Holleman F, Crenier L et al. Endoscopic duodenal mucosal resurfacing for the treatment of type 2 diabetes mellitus: one year results from the first international, open-label, prospective, multicentre study. Gut 2020;69:295–303.

[157]

van Baar ACG, Meiring S, Holleman F et al. Alternative treatments for type 2 diabetes and associated metabolic diseases: medical therapy or endoscopic duodenal mucosal remodelling? Gut 2021;70:2196–2204.

[158]

van Baar ACG, Devière J, Hopkins D et al. Durable metabolic improvements 2 years after duodenal mucosal resurfacing (DMR) in patients with type 2 diabetes (REVITA-1 Study). Diabetes Res Clin Pract 2022;184:109194.

[159]

van Kessel SP, Frye AK, El-Gendy AO et al. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat Commun 2019;10:310.

[160]

Villmones HC, Svanevik M, Ulvestad E et al. Investigating the human jejunal microbiota. Sci Rep 2022;12:1682.

[161]

Vonaesch P, Araújo JR, Gody J-C et al. Stunted children display ectopic small intestinal colonization by oral bacteria, which cause lipid malabsorption in experimental models. Proc Natl Acad Sci USA 2022;119:e2209589119.

[162]

Vujkovic-Cvijin I, Dunham RM, Iwai S et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med 2013;5:193–ra91.

[163]

Wahlström A, Sayin SI, Marschall HU et al. Intestinal cross-talk between bile acids and microbiota and its impact on host metabolism. Cell Metab 2016;24:41–50.

[164]

Wang M, Ahrné S, Jeppsson B et al. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 2005;54:219–231.

[165]

Wang S, Kuang J, Zhang H et al. Bile acid-microbiome interaction promotes gastric carcinogenesis. Adv Sci 2022;9:e2200263.

[166]

Wang X-W, Sun Z, Jia H et al. Identifying keystone species in microbial communities using deep learning. Nat Ecol Evol 2024;8:22–31.

[167]

Williams BB, van Benschoten AH, Cimermancic P et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 2014;16:495–503.

[168]

Wu Q, Liang X, Wang K et al. Intestinal hypoxia-inducible factor 2α regulates lactate levels to shape the gut microbiome and alter thermogenesis. Cell Metab 2021;33:1988–2003.e7.

[169]

Xu S-S, Wang N, Huang L et al. Changes in the mucosa-associated microbiome and transcriptome across gut segments are associated with obesity in a Metabolic Syndrome Porcine Model. Microbiol Spectr 2022;10:e0071722.

[170]

Yadav J, Liang T, Qin T et al. Gut microbiome modified by bariatric surgery improves insulin sensitivity and correlates with increased brown fat activity and energy expenditure. Cell Rep Med 2023;4:101051.

[171]

Yang I, Nell S, Suerbaum S. Survival in hostile territory: the microbiota of the stomach. FEMS Microbiol Rev 2013;37:736–761.

[172]

Yang G, Hong E, Oh S et al. Non-viable Lactobacillus johnsonii JNU3402 protects against diet-induced obesity. Foods 2020;9:1494.

[173]

Yang J, He Q, Lu F et al. A distinct microbiota signature precedes the clinical diagnosis of hepatocellular carcinoma. Gut Microbes 2023;15:2201159.

[174]

Yano JM, Yu K, Donaldson GP et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015;161:264–276.

[175]

Yilmaz B, Fuhrer T, Morgenthaler D et al. Plasticity of the adult human small intestinal stoma microbiota. Cell Host Microbe 2022;30:1773–1787.

[176]

Zhang X, Chen G, Zhang H et al. Bioinspired oral delivery devices. Nat Rev Bioeng 2023;1:208–225.

[177]

Zhao L, Zhang F, Ding X et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science (New York, N.Y.) 2018;359:1151–1156.

[178]

Zheng X, Huang F, Zhao A et al. Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice. BMC Biol 2017;15:120.

[179]

Zheng X, Chen T, Jiang R et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab 2021;33:791–803.

[180]

Zhu L, Fu J, Xiao X et al. Faecal microbiota transplantation-mediated jejunal microbiota changes halt high-fat diet-induced obesity in mice via retarding intestinal fat absorption. Microb Biotechnol 2022;15:337–352.

[181]

Zmora N, Zilberman-Schapira G, Suez J et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 2018;174:1388–1405.

RIGHTS & PERMISSIONS

The Author(s) 2024. Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (6563KB)

383

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/