Stress granules and organelles: coordinating cellular responses in health and disease

Ying Liu , Yin Li , Peipei Zhang

Protein Cell ›› 2025, Vol. 16 ›› Issue (6) : 418 -438.

PDF (7034KB)
Protein Cell ›› 2025, Vol. 16 ›› Issue (6) : 418 -438. DOI: 10.1093/procel/pwae057
REVIEW

Stress granules and organelles: coordinating cellular responses in health and disease

Author information +
History +
PDF (7034KB)

Abstract

Membrane-bound organelles and membraneless organelles (MLOs) coordinate various biological processes within eukaryotic cells. Among these, stress granules (SGs) are significant cytoplasmic MLOs that form in response to cellular stress, exhibiting liquid-like properties alongside stable substructures. SGs interact with diverse organelles, thereby influencing cellular pathways that are critical in both health and disease contexts. This review discusses the interplay between SGs and organelles and explores the methodologies employed to analyze interactions between SGs and other MLOs. Furthermore, it highlights the pivotal roles SGs play in regulating cellular responses and the pathogenesis of amyotrophic lateral sclerosis. Gaining insights into these interactions is essential for deciphering the mechanisms underlying both physiological processes and pathological conditions.

Keywords

stress granules / membraneless organelle / organelles / interplay / techniques

Cite this article

Download citation ▾
Ying Liu, Yin Li, Peipei Zhang. Stress granules and organelles: coordinating cellular responses in health and disease. Protein Cell, 2025, 16(6): 418-438 DOI:10.1093/procel/pwae057

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aladesuyi Arogundade O, Nguyen S, Leung R et al. Nucleolar stress in C9orf72 and sporadic ALS spinal motor neurons precedes TDP-43 mislocalization. Acta Neuropathol Commun 2021;9:26.

[2]

Alberti S, Hyman AA. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat Rev Mol Cell Biol 2021;22:196–213.

[3]

Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 2019;176:419–434.

[4]

Aly MK, Ninomiya K, Adachi S et al. Two distinct nuclear stress bodies containing different sets of RNA-binding proteins are formed with HSATIII architectural noncoding RNAs upon thermal stress exposure. Biochem Biophys Res Commun 2019;516:419–423.

[5]

Amen T, Kaganovich D. Stress granules inhibit fatty acid oxidation by modulating mitochondrial permeability. Cell Reports 2021;35:11109237.

[6]

An H, Tan JT, Shelkovnikova TA. Stress granules regulate stress-induced paraspeckle assembly. J Cell Biol 2019;218:4127–4140.

[7]

An H, De Meritens CR, Shelkovnikova TA. Connecting the “dots”: RNP granule network in health and disease. Biochim Biophys Acta (BBA)—Mol Cell Res 2021;1868:119058.

[8]

Andersen JS, Lam YW, Leung AKL et al. Nucleolar proteome dynamics. Nature 2005;433:77–83.

[9]

Andrei MA, Ingelfinger D, Heintzmann R et al. A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA 2005;11:717–727.

[10]

Angel M, Fleshler E, Atrash MK et al. Nuclear RNA-related processes modulate the assembly of cytoplasmic RNA granules. Nucleic Acids Research 2024;52:5356–5375.

[11]

Antoniani F, Cimino M, Mediani L et al. Loss of PML nuclear bodies in familial amyotrophic lateral sclerosis-frontotemporal dementia. Cell Death Discov 2023;9:1–16.

[12]

Apicco DJ, Ash PEA, Maziuk B et al. Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat Neurosci 2018;21:72–80.

[13]

Arimoto K, Fukuda H, Imajoh-Ohmi S et al. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 2008;10:1324–1332.

[14]

Arseni D, Nonaka T, Jacobsen MH et al. Heteromeric amyloid filaments of ANXA11 and TDP-43 in FTLD-TDP Type C. Nature 2024;634:662–668.

[15]

Aulas A, Fay MM, Lyons SM et al. Stress-specific differences in assembly and composition of stress granules and related foci. J Cell Sci 2017;130:927–937.

[16]

Banani SF, Rice AM, Peeples WB et al. Compositional control of phase-separated cellular bodies. Cell 2016;166:651–663.

[17]

Banani SF, Lee HO, Hyman AA et al. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 2017;18:285–298.

[18]

Baron DM, Kaushansky LJ, Ward CL et al. Amyotrophic lateral sclerosis-linked FUS/TLS alters stress granule assembly and dynamics. Mol Neurodegener 2013;8:30.

[19]

Berchtold D, Battich N, Pelkmans L. A systems-level study reveals regulators of membrane-less organelles in human cells. Mol Cell 2018;72:1035–1049.e5.

[20]

Biamonti G, Vourc’h C. Nuclear stress bodies. Cold Spring Harbor Perspect Biol 2010;2:a000695–a000695.

[21]

Böddeker TJ, Rusch A, Leeners K et al. Actin and microtubules position stress granules. PRX Life 2023;1:023010.

[22]

Boulon S, Westman BJ, Hutten S et al. The nucleolus under stress. Mol Cell 2010;40:216–227.

[23]

Brangwynne CP, Eckmann CR, Courson DS et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 2009;324:1729–1732.

[24]

Branon TC, Bosch JA, Sanchez AD et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol 2018;36:880–887.

[25]

Bussi C, Mangiarotti A, Vanhille-Campos C et al. Stress granules plug and stabilize damaged endolysosomal mem-branes. Nature 2023;623:1062–1069.

[26]

Catara G, Grimaldi G, Schembri L et al. PARP1-produced poly-ADP-ribose causes the PARP12 translocation to stress granules and impairment of Golgi complex functions. Sci Rep 2017;7:14035.

[27]

Cereghetti G, Wilson-Zbinden C, Kissling VM et al. Reversible amyloids of pyruvate kinase couple cell metabolism and stress granule disassembly. Nat Cell Biol 2021;23:1085–1094.

[28]

Chernov KG, Barbet Álie , Hamon L et al. Role of microtubules in stress granule assembly. J Biol Chem 2009;284:36569–36580.

[29]

Child JR, Chen Q, Reid DW et al. Recruitment of endoplasmic reticulum-targeted and cytosolic mRNAs into membrane-associated stress granules. RNA 2021;27:1241–1256.

[30]

Christopher JA, Stadler C, Martin CE et al. Subcellular proteomics. Nat Rev Methods Primers 2021;1:32.

[31]

Cioni J-M, Lin JQ, Holtermann AV et al. Late endosomes act as mRNA translation platforms and sustain mitochondria in axons. Cell 2019;176:56–72.e15.

[32]

Collins M, Li Y, Bowser R. RBM45 associates with nuclear stress bodies and forms nuclear inclusions during chronic cellular stress and in neurodegenerative diseases. Acta Neuropathol Commun 2020;8:1–25.

[33]

Courchaine EM, Barentine AES, Straube K et al. DMA-tudor interaction modules control the specificity of in vivo condensates. Cell 2021;184:3612–3625.e17.

[34]

Cui Q, Bi H, Lv Z et al. Diverse CMT2 neuropathies are linked to aberrant G3BP interactions in stress granules. Cell 2023;186:803–820.e25.

[35]

Das R, Schwintzer L, Vinopal S et al. New roles for the de-ubiquitylating enzyme OTUD4 in an RNA–protein network and RNA granules. J Cell Sci 2019;132:jcs229252.

[36]

Dellaire G, Bazett-Jones DP. PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 2004;26:963–977.

[37]

de Oliveira Freitas Machado C, Schafranek M, Brüggemann M et al. Poison cassette exon splicing of SRSF6 regulates nuclear speckle dispersal and the response to hypoxia. Nucleic Acids Res 2023;51:870–890.

[38]

Ding Q, Chaplin J, Morris MJ et al. TDP-43 mutation affects stress granule dynamics in differentiated NSC-34 Motoneuron-like cells. Front Cell Dev Biol 2021;9:611601.

[39]

Dopie J, Sweredoski MJ, Moradian A et al. Tyramide signal amplification mass spectrometry (TSA-MS) ratio identifies nuclear speckle proteins. J Cell Biol 2020;219:e201910207.

[40]

Dubinski A, Gagné M, Peyrard S et al. Stress granule assembly in vivo is deficient in the CNS of mutant TDP-43 ALS mice. Hum Mol Genet 2023;32:319–332.

[41]

Elvira G, Wasiak S, Blandford V et al. Characterization of an RNA granule from developing brain. Mol Cell Proteom 2006;5:635–651.

[42]

Esposito M, Fang C, Cook KC et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nat Cell Biol 2021;23:257–267.

[43]

Fang M, Liu Y, Huang C et al. Targeting stress granules in neurodegenerative diseases: a focus on biological function and dynamics disorders. Biofactors 2023;50:422–438. biof.2017

[44]

Fernandopulle MS, Lippincott-Schwartz J, Ward ME. RNA transport and local translation in neurodevelopmental and neurodegenerative disease. Nat Neurosci 2021;24:622–632.

[45]

Fong K, Li Y, Wang W et al. Whole-genome screening identifies proteins localized to distinct nuclear bodies. J Cell Biol 2013;203:149–164.

[46]

Freemont PS. Ubiquitination: RING for destruction? Curr Biol 2000;10:R84–R87.

[47]

Galganski L, Urbanek MO, Krzyzosiak WJ. Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res 2017;45:10350–10368.

[48]

Gärtner A, Muller S. PML, SUMO, and RNF4: guardians of nuclear protein quality. Mol Cell 2014;55:1–3.

[49]

Godet A-C, Roussel E, David F et al. Long non-coding RNA Neat1 and paraspeckle components are translational regulators in hypoxia. eLife 2022;11:e69162.

[50]

Gomes E, Shorter J. The molecular language of membraneless organelles. J Biol Chem 2019;294:7115–7127.

[51]

Guo Y, Zhang X. Unveiling intracellular phase separation: advances in optical imaging of biomolecular condensates. Trends Biochem Sci 2024;49:901–915.

[52]

Hallacli E, Kayatekin C, Nazeen S et al. The Parkinson’s disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability. Cell 2022;185:2035–2056. e33.

[53]

Hirose T, Ninomiya K, Nakagawa S et al. A guide to membraneless organelles and their various roles in gene regulation. Nat Rev Mol Cell Biol 2022;24:288–304.

[54]

Hofmann S, Kedersha N, Anderson P et al. Molecular mechanisms of stress granule assembly and disassembly. Biochim Biophys Acta Mol Cell Res 2021;1868:118876.

[55]

Hondele M, Sachdev R, Heinrich S et al. DEAD-box ATPases are global regulators of phase-separated organelles. Nature 2019;573:144–148.

[56]

Hu S, Zhang Y, Yi Q et al. Time-resolved proteomic profiling reveals compositional and functional transitions across the stress granule life cycle. Nat Commun 2023;14:7782.

[57]

Hubstenberger A, Courel M, Bénard M et al. P-body purification reveals the condensation of repressed mRNA regulons. Mol Cell 2017;68:144–157.e5.

[58]

Ivanov P, Kedersha N, Anderson P. Stress granules and processing bodies in translational control. Cold Spring Harb Perspect Biol 2019;11:a032813.

[59]

Jain S, Wheeler JR, Walters RW et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 2016;164:487–498.

[60]

Jia J, Wang F, Bhujabal Z et al. Stress granules and mTOR are regulated by membrane atg8ylation during lysosomal damage. J Cell Biol 2022;221:e202207091.

[61]

Kedersha N, Cho MR, Li W et al. Dynamic shuttling of Tia-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol 2000;151:1257–1268.

[62]

Kedersha N, Chen S, Gilks N et al. Evidence that ternary complex (eIF2-GTP-tRNAi Met)–deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell 2002;13:195–210.

[63]

Kedersha N, Stoecklin G, Ayodele M et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 2005;169:871–884.

[64]

Keiten-Schmitz J, Wagner K, Piller T et al. The nuclear SUMO-targeted ubiquitin quality control network regulates the dynamics of cytoplasmic stress granules. Mol Cell 2020;79:54–67.e7.

[65]

Khong A, Matheny T, Jain S et al. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol Cell 2017;68:808–820.e5.

[66]

Kim J, Han KY, Khanna N et al. Nuclear speckle fusion via long-range directional motion regulates speckle morphology after transcriptional inhibition. J Cell Sci 2019;132:jcs226563.

[67]

Kovacs M, Geltinger F, Schartel L et al. Ola1p trafficking indicates an interaction network between mitochondria, lipid droplets, and stress granules in times of stress. J Lipid Res 2023;64:100473.

[68]

Kwiatkowski TJ, Bosco DA, LeClerc AL et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009;323:1205–1208.

[69]

Lallemand-Breitenbach V, De Thé H. PML nuclear bodies: from architecture to function. Curr Opin Cell Biol 2018;52:154–161.

[70]

Lam SS, Martell JD, Kamer KJ et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods 2015;12:51–54.

[71]

Lee K-H, Zhang P, Kim HJ et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 2016;167:774–788.e17.

[72]

Lee JE, Cathey PI, Wu H et al. Endoplasmic reticulum contact sites regulate the dynamics of membraneless organelles. Science 2020;367:eaay7108.

[73]

Lester E, Ooi FK, Bakkar N et al. Tau aggregates are RNA-protein assemblies that mislocalize multiple nuclear speckle components. Neuron 2021;109:1675–1691.e9.

[74]

Li Z, Liu X, Liu M. Stress granule homeostasis, aberrant phase transition, and amyotrophic lateral sclerosis. ACS Chem Neurosci 2022;13:2356–2370.

[75]

Li T, Zeng Z, Fan C et al. Role of stress granules in tumorigenesis and cancer therapy. Biochim Biophys Acta Rev Cancer 2023;1878:189006.

[76]

Li P, Chen P, Qi F et al. High-throughput and proteome-wide discovery of endogenous biomolecular condensates. Nat Chem 2024;16:1101–1112.

[77]

Liao Y-C, Fernandopulle MS, Wang G et al. RNA granules hitchhike on lysosomes for long-distance transport, using Annexin A11 as a molecular tether. Cell 2019;179:147–164.e20.

[78]

Liu S, Zhang X, Yao X et al. Mammalian IRE1α dynamically and functionally coalesces with stress granules. Nat Cell Biol 2024;26:917–931.

[79]

Liu-Yesucevitz L, Bilgutay A, Zhang Y-J et al. Tar DNA Binding Protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS One 2010;5:e13250.

[80]

Loschi M, Leishman CC, Berardone N et al. Dynein and kinesin regulate stress-granule and P-body dynamics. J Cell Sci 2009;122:3973–3982.

[81]

Ma W, Mayr C. A Membraneless organelle associated with the endoplasmic reticulum enables 3?UTR-mediated protein-protein interactions. Cell 2018;175:1492–1506. e19.

[82]

Ma X, Zhang Y, Zhang Y et al. A stress-induced cilium-to-PML-NB route drives senescence initiation. Nat Commun 2023;14:1840.

[83]

Mackenzie IR, Nicholson AM, Sarkar M et al. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 2017;95:808–816.e9.

[84]

Majerciak V, Zhou T, Kruhlak MJ et al. RNA helicase DDX6 and scaffold protein GW182 in P-bodies promote biogenesis of stress granules. Nucleic Acids Res 2023;51:9337–9355.

[85]

Mallarino LE. Nephronophthisis gene products display RNA-binding properties and are recruited to stress granules. Sci Rep 2020;10:15954.

[86]

Marijan D, Tse R, Elliott K et al. Stress-specific aggregation of proteins in the amyloid bodies. FEBS Lett 2019;593:3162–3172.

[87]

Markmiller S, Soltanieh S, Server KL et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 2018;172:590–604.e13.

[88]

McCluggage F, Fox AH. Paraspeckle nuclear condensates: global sensors of cell stress? Bioessays 2021;43:e2000245.

[89]

Millar SR, Huang JQ, Schreiber KJ et al. A new phase of networking: the molecular composition and regulatory dynamics of mammalian stress granules. Chem Rev 2023;123:9036–9064.

[90]

Mintz PJ, Patterson SD, Neuwald AF et al. Purification and biochemical characterization of interchromatin granule clusters. EMBO J 1999;18:4308–4320.

[91]

Mittag T, Pappu RV. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol Cell 2022;82:2201–2214.

[92]

Moon SL, Morisaki T, Khong A et al. Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nat Cell Biol 2019;21:162–168.

[93]

Muramatsu M, Onishi T. Chapter 13 Isolation and purification of nucleoli and nucleolar chromatin from mammalian cells. Methods in Cell Biol 2008;17:141–161.

[94]

Nadezhdina ES, Lomakin AJ, Shpilman AA et al. Microtubules govern stress granule mobility and dynamics. Biochim Biophys Acta 2010;1803:361–371.

[95]

Naganuma T, Nakagawa S, Tanigawa A et al. Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J 2012;31:4020–4034.

[96]

Nilsson D, Sunnerhagen P. Cellular stress induces cytoplasmic RNA granules in fission yeast. RNA 2011;17:120–133.

[97]

Ninomiya K, Adachi S, Natsume T et al. LncRNA-dependent nuclear stress bodies promote intron retention through SR protein phosphorylation. EMBO J 2020;39:e102729.

[98]

Nizami Z, Deryusheva S, Gall JG. The Cajal body and histone locus body. Cold Spring Harb Perspect Biol 2010;2:a000653.

[99]

Paget M, Cadena C, Ahmad S et al. Stress granules are shock absorbers that prevent excessive innate immune responses to dsRNA. Mol Cell 2023;83:1180–1196.e8.

[100]

Palanca A, Casafont I, Berciano MT et al. Reactive nucleolar and Cajal body responses to proteasome inhibition in sensory ganglion neurons. Biochim Biophys Acta 2014;1842:848–859.

[101]

Papadopoulos C, Kravic B, Meyer H. Repair or lysophagy: dealing with damaged lysosomes. J Mol Biol 2020;432:231–239.

[102]

Protter DSW, Parker R. Principles and properties of stress granules. Trends Cell Biol 2016;26:668–679.

[103]

Qin W, Cheah JS, Xu C et al. Dynamic mapping of proteome trafficking within and between living cells by TransitID. Cell 2023;186:3307–3324.e30.

[104]

Rai AK, Chen J-X, Selbach M et al. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature 2018;559:211–216.

[105]

Ratovitski T, Chighladze E, Arbez N et al. Huntingtin protein interactions altered by polyglutamine expansion as determined by quantitative proteomic analysis. Cell Cycle 2012;11:2006–2021.

[106]

Ren Z, Tang W, Peng L et al. Profiling stress-triggered RNA condensation with photocatalytic proximity labeling. Nat Commun 2023;14:7390.

[107]

Repici M, Hassanjani M, Maddison DC et al. The Parkinson’s Disease-Linked Protein DJ-1 associates with cytoplasmic mRNP granules during stress and neurodegeneration. Mol Neurobiol 2019;56:61–77.

[108]

Rhee H-W, Zou P, Udeshi ND et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 2013;339:1328–1331.

[109]

Riback JA, Katanski CD, Kear-Scott JL et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 2017;168:1028–1040.e19.

[110]

Riggs CL, Kedersha N, Amarsanaa M et al. UBAP2L contributes to formation of P-bodies and modulates their association with stress granules. J Cell Biol 2024;223:e202307146.

[111]

Ripin N, Parker R. Formation, function, and pathology of RNP granules. Cell 2023;186:4737–4756.

[112]

Robinson JL, Suh E, Xu Y et al. Annexin A11 aggregation in FTLD–TDP type C and related neurodegenerative dis-ease proteinopathies. Acta Neuropathol 2024;147:104.

[113]

Rossi S, Rompietti V, Antonucci Y et al. UsnRNP trafficking is regulated by stress granules and compromised by mutant ALS proteins. Neurobiol Dis 2020;138:104792.

[114]

Roux KJ, Kim DI, Raida M et al. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 2012;196:801–810.

[115]

Sahin U, Ferhi O, Jeanne M et al. Oxidative stress–induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J Cell Biol 2014;204:931–945.

[116]

Sahoo PK, Lee SJ, Jaiswal PB et al. Axonal G3BP1 stress granule protein limits axonal mRNA translation and nerve regeneration. Nat Commun 2018;9:3358.

[117]

Saitoh N, Spahr CS, Patterson SD et al. Proteomic analysis of interchromatin granule clusters. Mol Biol Cell 2004;15:3876–3890.

[118]

Samir P, Kesavardhana S, Patmore DM et al. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature 2019;573:590–594.

[119]

Sanchez II, Nguyen TB, England WE et al. Huntington’s disease mice and human brain tissue exhibit increased G3BP1 granules and TDP43 mislocalization. J Clin Invest 2021;131:e140723.

[120]

Sanders DW, Kedersha N, Lee DSW et al. Competing protein-RNA interaction networks control multiphase intracellular organization. Cell 2020;181:306–324.e28.

[121]

Settembre C, Fraldi A, Medina DL et al. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 2013;14:283–296.

[122]

Shelkovnikova TA, Robinson HK, Southcombe JA et al. Multistep process of FUS aggregation in the cell cytoplasm involves RNA-dependent and RNA-independent mechanisms. Hum Mol Genet 2014a;23:5211–5226.

[123]

Shelkovnikova TA, Robinson HK, Troakes C et al. Compromised paraspeckle formation as a pathogenic factor in FUSopathies. Hum Mol Genet 2014b;23:2298–2312.

[124]

Shelkovnikova TA, Kukharsky MS, An H et al. Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis. Mol Neurodegener 2018;13:30.

[125]

Sidrauski C, McGeachy AM, Ingolia NT et al. The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. eLife 2015;4:e05033.

[126]

Simon MD, Wang CI, Kharchenko PV et al. The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci USA 2011;108:20497–20502.

[127]

Sreedharan J, Blair IP, Tripathi VB et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008;319:1668–1672.

[128]

Staněk D, Fox AH. Nuclear bodies: news insights into structure and function. Curr Opin Cell Biol 2017;46:94–101.

[129]

Storkebaum E, Rosenblum K, Sonenberg N. Messenger RNA translation defects in neurodegenerative diseases. N Engl J Med 2023;388:1015–1030.

[130]

Sung H-M, Schott J, Boss P et al. Stress-induced nuclear speckle reorganization is linked to activation of immediate early gene splicing. J Cell Biol 2023;222:e202111151.

[131]

Szewczyk B, Günther R, Japtok J et al. FUS ALS neurons activate major stress pathways and reduce translation as an early protective mechanism against neurodegeneration. Cell Reports 2023;42:112025.

[132]

Takanashi K, Yamaguchi A. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation. Biochem Biophys Res Commun 2014;452:600–607.

[133]

Tsai N-P, Tsui Y-C, Wei L-N. Dynein motor contributes to stress granule dynamics in primary neurons. Neuroscience 2009;159:647–656.

[134]

Tulpule A, Guan J, Neel DS et al. Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell 2021;184:2649–2664.e18.

[135]

Van Treeck B, Protter DSW, Matheny T et al. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc Natl Acad Sci USA 2018;115:2734–2739.

[136]

Vessey JP, Vaccani A, Xie Y et al. Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules. J Neurosci 2006;26:6496–6508.

[137]

Wang Y, Chen L-L. Organization and function of paraspeckles. Essays Biochem 2020;64:875–882.

[138]

Wang P, Tang W, Li Z et al. Mapping spatial transcriptome with light-activated proximity-dependent RNA labeling. Nat Chem Biol 2019;15:1110–1119.

[139]

West JA, Davis CP, Sunwoo H et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell 2014;55:791–802.

[140]

Wheeler EC, Vu AQ, Einstein JM et al. Pooled CRISPR screens with imaging on microraft arrays reveals stress granule-regulatory factors. Nat Methods 2020;17:636–642.

[141]

Wilczynska A, Aigueperse C, Kress M et al. The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J Cell Sci 2005;118:981–992.

[142]

Wippich F, Bodenmiller B, Trajkovska MG et al. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 2013;152:791–805.

[143]

Wolozin B, Ivanov P. Stress granules and neurodegeneration. Nat Rev Neurosci 2019;20:649–666.

[144]

Woulfe J. Nuclear bodies in neurodegenerative disease. Biochim Biophys Acta 2008;1783:2195–2206.

[145]

Youn J-Y, Dunham WH, Hong SJ et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol Cell 2018;69:517–532.e11.

[146]

Youn J-Y, Dyakov BJA, Zhang J et al. Properties of stress granule and p-body proteomes. Mol Cell 2019;76:286–294.

[147]

Younas N, Zafar S, Shafiq M et al. SFPQ and Tau: critical factors contributing to rapid progression of Alzheimer’s disease. Acta Neuropathol 2020;140:317–339.

[148]

Zalfa F, Achsel T, Bagni C. mRNPs, polysomes or granules: FMRP in neuronal protein synthesis. Curr Opin Neurobiol 2006;16:265–269.

[149]

Zhang Y, Seemann J. RNA scaffolds the Golgi ribbon by forming condensates with GM130. Nat Cell Biol 2024;26:1139–1153.

[150]

Zhang K, Daigle JG, Cunningham KM et al. Stress granule assembly disrupts nucleocytoplasmic transport. Cell 2018;173:958–971.e17.

[151]

Zhang P, Fan B, Yang P et al. Chronic optogenetic induction of stress granules is cytotoxic and reveals the evolution of ALS-FTD pathology. eLife 2019;8:e39578.

[152]

Zhang K, Huang M, Li A et al. DIAPH3 condensates formed by liquid-liquid phase separation act as a regulatory hub for stress-induced actin cytoskeleton remodeling. Cell Reports 2023;42:111986.

[153]

Zhao YG, Zhang H. Phase separation in membrane biology: the interplay between membrane-bound organelles and membraneless condensates. Dev Cell 2020;55:30–44.

[154]

Zhao Z, Qing Y, Dong L et al. QKI shuttles internal m7G-modified transcripts into stress granules and modulates mRNA metabolism. Cell 2023;186:3208–3226.e27.

[155]

Zhou Y, Panhale A, Shvedunova M et al. RNA damage compartmentalization by DHX9 stress granules. Cell 2024;187:1701–1718.e28.

RIGHTS & PERMISSIONS

The Author(s) 2024. Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (7034KB)

247

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/