A long non-coding RNA LncSync regulates mouse cardiomyocyte homeostasis and cardiac hypertrophy through coordination of miRNA actions

Rujin Huang, Jinyang Liu, Xi Chen, Ying Zhi, Shuangyuan Ding, Jia Ming, Yulin Li, Yangming Wang, Jie Na

PDF(19694 KB)
PDF(19694 KB)
Protein Cell ›› 2023, Vol. 14 ›› Issue (2) : 153-157. DOI: 10.1093/procel/pwac019
LETTER
LETTER

A long non-coding RNA LncSync regulates mouse cardiomyocyte homeostasis and cardiac hypertrophy through coordination of miRNA actions

Author information +
History +

Cite this article

Download citation ▾
Rujin Huang, Jinyang Liu, Xi Chen, Ying Zhi, Shuangyuan Ding, Jia Ming, Yulin Li, Yangming Wang, Jie Na. A long non-coding RNA LncSync regulates mouse cardiomyocyte homeostasis and cardiac hypertrophy through coordination of miRNA actions. Protein Cell, 2023, 14(2): 153‒157 https://doi.org/10.1093/procel/pwac019

References

[1]
Agarwal V, Bell GW, Nam JW et al. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015;4:e0500B.
CrossRef Google scholar
[2]
Betel D, Wilson M, Gabow A et al. The microRNA.org resource: targets and expression. Nucl Acids Res 2008;36:D149–153.
CrossRef Google scholar
[3]
Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 2020;48:D127–131.
CrossRef Google scholar
[4]
de Soysa TY, Ranade SS, Okawa S et al. Single-cell analysis of cardiogenesis reveals basis for organ-level developmental defects. Nature 2019;572:120–124.
CrossRef Google scholar
[5]
Ding CC, Rose J, Sun T et al. MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis. Nat Metab 2020;2:270–277.
CrossRef Google scholar
[6]
Fang X, Wang H, Han D et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA 2019;116:2672–2680.
CrossRef Google scholar
[7]
Fang X, Cai Z, Wang H et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ Res 2020;127(4):486–501.
CrossRef Google scholar
[8]
Feng H, Schorpp K, Jin J et al. Transferrin receptor is a specific ferroptosis marker. Cell Rep 2020;30:3411–3423.
CrossRef Google scholar
[9]
George MR, Duan Q, Nagle A et al. Minimal in vivo requirements for developmentally regulated cardiac long intergenic non-coding RNAs. Development 2019;146(23):devl85314.
CrossRef Google scholar
[10]
Han X, Luo S, Peng G et al. Mouse knockout models reveal largely dispensable but context-dependent functions of IncRNAs during development. J Moi Cell Biol 2018;10:175–178.
CrossRef Google scholar
[11]
Haniffa M, Taylor D, Linnarsson S et al. A roadmap for the Human Developmental Cell Atlas. Nature 2021;597:196–205.
CrossRef Google scholar
[12]
Pijuan-Sala B, Griffiths JA, Guibentif C et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 2019;566:490–495.
CrossRef Google scholar
[13]
Shiojima I, Sato K, Izumiya Y et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Inuest 2005;115:2108–2118.
CrossRef Google scholar
[14]
Sun X, Sit A, Feinberg MW. Role of miR-181 family in regulating vascular inflammation and immunity. Trends Cardiovasc Med 2014;24:105–112.
CrossRef Google scholar
[15]
Yang WS, SriRamaratnam R, Welsch ME et al. Regulation of ferrop-totic cancer cell death by GPX4. Cell 2014;156:317–331.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022. Published by Oxford University Press on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(19694 KB)

Accesses

Citations

Detail

Sections
Recommended

/