Oxidative phosphorylation safeguards pluripotency via UDP-N-acetylglucosamine

Jiani Cao, Meng Li, Kun Liu, Xingxing Shi, Ning Sui, Yuchen Yao, Xiaojing Wang, Shiyu Li, Yuchang Tian, Shaojing Tan, Qian Zhao, Liang Wang, Xiahua Chai, Lin Zhang, Chong Liu, Xing Li, Zhijie Chang, Dong Li, Tongbiao Zhao

PDF(4185 KB)
PDF(4185 KB)
Protein Cell ›› 2023, Vol. 14 ›› Issue (5) : 376-381. DOI: 10.1093/procel/pwac009
LETTER
LETTER

Oxidative phosphorylation safeguards pluripotency via UDP-N-acetylglucosamine

Author information +
History +

Cite this article

Download citation ▾
Jiani Cao, Meng Li, Kun Liu, Xingxing Shi, Ning Sui, Yuchen Yao, Xiaojing Wang, Shiyu Li, Yuchang Tian, Shaojing Tan, Qian Zhao, Liang Wang, Xiahua Chai, Lin Zhang, Chong Liu, Xing Li, Zhijie Chang, Dong Li, Tongbiao Zhao. Oxidative phosphorylation safeguards pluripotency via UDP-N-acetylglucosamine. Protein Cell, 2023, 14(5): 376‒381 https://doi.org/10.1093/procel/pwac009

References

[1]
Folmes CD, Dzeja PP, Nelson TJ et al. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 2012;11:596–606.
CrossRef Google scholar
[2]
Folmes CD, Nelson TJ, Martinez-Fernandez A et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 2011;14:264–271.
CrossRef Google scholar
[3]
Gu W, Gaeta X, Sahakyan A. et al. Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell 2016;19:476–490.
CrossRef Google scholar
[4]
Ito K, Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 2014;15:243–256.
CrossRef Google scholar
[5]
Jang H, Kim TW, Yoon S et al. O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell 2012;11:62–74.
CrossRef Google scholar
[6]
Kondoh H, Lleonart ME, Nakashima Y et al. A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal 2007;9:293–299.
CrossRef Google scholar
[7]
Liu K, Cao J, Shi X et al. Cellular metabolism and homeostasis in pluripotency regulation. Protein Cell 2020;11:630–640.
CrossRef Google scholar
[8]
Liu K, Zhao Q, Liu P et al. ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance. Autophagy 2016;12:2000–2008.
CrossRef Google scholar
[9]
Myers SA, Panning B, Burlingame AL. Polycomb repressive complex 2 is necessary for the normal site-specific O-GlcNAc distribution in mouse embryonic stem cells. Proc Natl Acad Sci USA 2011;108:9490–9495.
CrossRef Google scholar
[10]
Todd LR, Damin MN, Gomathinayagam R et al. Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells. Mol Biol Cell 2010;21:1225–1236.
CrossRef Google scholar
[11]
Wang L, Ye X, Zhao T. The physiological roles of autophagy in the mammalian life cycle. Biol Rev Camb Philos Soc 2019;94:503–516.
CrossRef Google scholar
[12]
Xu X, Duan S, Yi F et al. Mitochondrial regulation in pluripotent stem cells. Cell Metab 2013;18:325–332.
CrossRef Google scholar
[13]
Zhang J, Nuebel E, Daley GQ et al. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 2012;11:589–595.
CrossRef Google scholar
[14]
Zhong X, Cui P, Cai Y et al. Mitochondrial dynamics is critical for the full pluripotency and embryonic developmental potential of pluripotent stem cells. Cell Metab 2019;29:979–992 e974.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022. Published by Oxford University Press on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(4185 KB)

Accesses

Citations

Detail

Sections
Recommended

/