Low-dose chloroquine treatment extends the lifespan of aged rats
Wei Li, Zhiran Zou, Yusheng Cai, Kuan Yang, Si Wang, Zunpeng Liu, Lingling Geng, Qun Chu, Zhejun Ji, Piu Chan, Guang-Hui Liu, Moshi Song, Jing Qu, Weiqi Zhang
Low-dose chloroquine treatment extends the lifespan of aged rats
[1] |
Aging Atlas C (2021) Aging Atlas: a multi-omics database for aging biology. Nucleic Acids Res 49:D825–D830
CrossRef
Google scholar
|
[2] |
Bi S, Liu Z, Wu Z, Wang Z, Liu X, Wang S, Ren J, Yao Y, Zhang W, Song M et al (2020) SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell 11:483–504
CrossRef
Google scholar
|
[3] |
Cai Y, Zhou H, Zhu Y, Sun Q, Ji Y, Xue A, Wang Y, Chen W, Yu X, Wang L et al (2020) Elimination of senescent cells by beta-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res 30:574–589
CrossRef
Google scholar
|
[4] |
Fox C, Cocchiaro P, Oakley F, Howarth R, Callaghan K, Leslie J, Luli S, Wood KM, Genovese F, Sheerin NS et al (2016) Inhibition of lysosomal protease cathepsin D reduces renal fibrosis in murine chronic kidney disease. Sci Rep 6:20101
CrossRef
Google scholar
|
[5] |
Geng L, Liu Z, Zhang W, Li W, Wu Z, Wang W, Ren R, Su Y, Wang P, Sun L et al (2019) Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein Cell 10:417–435
CrossRef
Google scholar
|
[6] |
He W, Wang B, Yang J, Zhuang Y, Wang L, Huang X, Chen J (2014) Chloroquine Improved Carbon Tetrachloride-Induced Liver Fibrosis through Its Inhibition of the Activation of Hepatic Stellate Cells: Role of Autophagy. Biol Pharm Bull 37:1505–1509
CrossRef
Google scholar
|
[7] |
Huang M, Li M, Xiao F, Pang P, Liang J, Tang T, Liu S, Chen B, Shu J, You Y et al (2020) Preliminary evidence from a multicenter prospective observational study of the safety and efficacy of chloroquine for the treatment of COVID-19. Natl Sci Rev 7:1428–1436
CrossRef
Google scholar
|
[8] |
Qian M., Liu Z., Peng L., Tang X., Meng F., Ao Y., Zhou M., Wang M., Cao X., Qin B., et al. (2018). Boosting ATM activity alleviates aging and extends lifespan in a mouse model of progeria. eLife 7.
CrossRef
Google scholar
|
[9] |
Sargiacomo C, Sotgia F, Lisanti MP (2020) COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection. Aging 12:6511–6517
CrossRef
Google scholar
|
[10] |
Schrezenmeier E, Dorner T (2020) Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 16:155–166
CrossRef
Google scholar
|
[11] |
Shen H, Wu N, Wang Y, Zhao H, Zhang L, Li T, Zhao M (2017) Chloroquine attenuates paraquat-induced lung injury in mice by altering inflammation, oxidative stress and fibrosis. Int Immunopharmacol 46:16–22
CrossRef
Google scholar
|
[12] |
Solomon VR, Lee H (2009) Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol 625:220–233
CrossRef
Google scholar
|
[13] |
Wellems TE, Plowe CV (2001) Chloroquine-resistant malaria. J Infect Dis 184:770–776
CrossRef
Google scholar
|
[14] |
Wozniacka A, Cygankiewicz I, Chudzik M, Sysa-Jedrzejowska A, Wranicz JK (2006) The cardiac safety of chloroquine phosphate treatment in patients with systemic lupus erythematosus: the influence on arrhythmia, heart rate variability and repolarization parameters. Lupus 15:521–525
CrossRef
Google scholar
|
[15] |
Wu Z, Zhang W, Song M, Wang W, Wei G, Li W, Lei J, Huang Y, Sang Y, Chan P et al (2018) Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein Cell 9:333–350
CrossRef
Google scholar
|
/
〈 | 〉 |