Ferroptosis as an important driver of lupus

Chao Mao, Guang Lei, Li Zhuang, Boyi Gan

PDF(273 KB)
PDF(273 KB)
Protein Cell ›› 2022, Vol. 13 ›› Issue (5) : 313-315. DOI: 10.1007/s13238-021-00892-1
COMMENTARY
COMMENTARY

Ferroptosis as an important driver of lupus

Author information +
History +

Cite this article

Download citation ▾
Chao Mao, Guang Lei, Li Zhuang, Boyi Gan. Ferroptosis as an important driver of lupus. Protein Cell, 2022, 13(5): 313‒315 https://doi.org/10.1007/s13238-021-00892-1

References

[1]
DixonSJ, Lemberg KM, LamprechtMR, SkoutaR, Zaitsev EM, GleasonCE, PatelDN, BauerAJ, CantleyAM, Yang WS et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072
CrossRef Google scholar
[2]
Garcia-RomoGS, Caielli S, VegaB, ConnollyJ, Allantaz F, XuZ, PunaroM, BaischJ, GuiducciC, Coffman RL et al (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3:73ra20
CrossRef Google scholar
[3]
JiangX, Stockwell BR, ConradM (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22:266–282
CrossRef Google scholar
[4]
JuangYT, WangY, SolomouEE, Li Y, MawrinC, TenbrockK, Kyttaris VC, TsokosGC (2005) Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV. J Clin Invest 115:996–1005
CrossRef Google scholar
[5]
KaulA, GordonC, CrowMK, Touma Z, UrowitzMB, van VollenhovenR, Ruiz-Irastorza G, HughesG (2016) Systemic lupus erythematosus. Nat Rev Dis Primers 2:16039
CrossRef Google scholar
[6]
KennyEF, HerzigA, KrugerR, Muth A, MondalS, ThompsonPR, Brinkmann V, BernuthHV, ZychlinskyA (2017) Diverse stimuli engage different neutrophil extracellular trap pathways. Elife 6:e24437
CrossRef Google scholar
[7]
LangX, GreenMD, WangW, Yu J, ChoiJE, JiangL, LiaoP, ZhouJ, Zhang Q, DowA et al (2019) Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov 9:1673–1685
CrossRef Google scholar
[8]
LiP, JiangM, LiK, LiH, ZhouY, Xiao X, XuY, KrishfieldS, LipskyPE, TsokosGC et al (2021) Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol 22:1107–1117
CrossRef Google scholar
[9]
MaoC, LiuX, ZhangY, Lei G, YanY, LeeH, Koppula P, WuS, ZhuangL, FangB et al (2021) DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593:586–590
CrossRef Google scholar
[10]
PetriM (1998) Infection in systemic lupus erythematosus. Rheum Dis Clin N Am 24:423–456
CrossRef Google scholar
[11]
RicklinD, Hajishengallis G, YangK, LambrisJD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797
CrossRef Google scholar
[12]
StoiberW, Obermayer A, SteinbacherP, KrautgartnerWD (2015) The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans. Biomolecules 5:702–723
CrossRef Google scholar
[13]
WangW, GreenM, ChoiJE, Gijon M, KennedyPD, JohnsonJK, LiaoP, LangX, Kryczek I, SellA et al (2019) CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569:270–274
CrossRef Google scholar
[14]
WinterbournCC, KettleAJ, HamptonMB (2016) Reactive oxygen species and neutrophil function. Annu Rev Biochem 85:765–792
CrossRef Google scholar
[15]
YangWS, SriRamaratnam R, WelschME, ShimadaK, SkoutaR, ViswanathanVS, CheahJH, Clemons PA, ShamjiAF, ClishCB et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(273 KB)

Accesses

Citations

Detail

Sections
Recommended

/