Ferroptosis as an important driver of lupus
Chao Mao, Guang Lei, Li Zhuang, Boyi Gan
Ferroptosis as an important driver of lupus
[1] |
DixonSJ, Lemberg KM, LamprechtMR, SkoutaR, Zaitsev EM, GleasonCE, PatelDN, BauerAJ, CantleyAM, Yang WS et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072
CrossRef
Google scholar
|
[2] |
Garcia-RomoGS, Caielli S, VegaB, ConnollyJ, Allantaz F, XuZ, PunaroM, BaischJ, GuiducciC, Coffman RL et al (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3:73ra20
CrossRef
Google scholar
|
[3] |
JiangX, Stockwell BR, ConradM (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22:266–282
CrossRef
Google scholar
|
[4] |
JuangYT, WangY, SolomouEE, Li Y, MawrinC, TenbrockK, Kyttaris VC, TsokosGC (2005) Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV. J Clin Invest 115:996–1005
CrossRef
Google scholar
|
[5] |
KaulA, GordonC, CrowMK, Touma Z, UrowitzMB, van VollenhovenR, Ruiz-Irastorza G, HughesG (2016) Systemic lupus erythematosus. Nat Rev Dis Primers 2:16039
CrossRef
Google scholar
|
[6] |
KennyEF, HerzigA, KrugerR, Muth A, MondalS, ThompsonPR, Brinkmann V, BernuthHV, ZychlinskyA (2017) Diverse stimuli engage different neutrophil extracellular trap pathways. Elife 6:e24437
CrossRef
Google scholar
|
[7] |
LangX, GreenMD, WangW, Yu J, ChoiJE, JiangL, LiaoP, ZhouJ, Zhang Q, DowA et al (2019) Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov 9:1673–1685
CrossRef
Google scholar
|
[8] |
LiP, JiangM, LiK, LiH, ZhouY, Xiao X, XuY, KrishfieldS, LipskyPE, TsokosGC et al (2021) Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol 22:1107–1117
CrossRef
Google scholar
|
[9] |
MaoC, LiuX, ZhangY, Lei G, YanY, LeeH, Koppula P, WuS, ZhuangL, FangB et al (2021) DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593:586–590
CrossRef
Google scholar
|
[10] |
PetriM (1998) Infection in systemic lupus erythematosus. Rheum Dis Clin N Am 24:423–456
CrossRef
Google scholar
|
[11] |
RicklinD, Hajishengallis G, YangK, LambrisJD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797
CrossRef
Google scholar
|
[12] |
StoiberW, Obermayer A, SteinbacherP, KrautgartnerWD (2015) The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans. Biomolecules 5:702–723
CrossRef
Google scholar
|
[13] |
WangW, GreenM, ChoiJE, Gijon M, KennedyPD, JohnsonJK, LiaoP, LangX, Kryczek I, SellA et al (2019) CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569:270–274
CrossRef
Google scholar
|
[14] |
WinterbournCC, KettleAJ, HamptonMB (2016) Reactive oxygen species and neutrophil function. Annu Rev Biochem 85:765–792
CrossRef
Google scholar
|
[15] |
YangWS, SriRamaratnam R, WelschME, ShimadaK, SkoutaR, ViswanathanVS, CheahJH, Clemons PA, ShamjiAF, ClishCB et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331
CrossRef
Google scholar
|
/
〈 | 〉 |