A pair of transporters controls mitochondrial Zn2+ levels to maintain mitochondrial homeostasis

Tengfei Ma, Liyuan Zhao, Jie Zhang, Ruofeng Tang, Xin Wang, Nan Liu, Qian Zhang, Fengyang Wang, Meijiao Li, Qian Shan, Yang Yang, Qiuyuan Yin, Limei Yang, Qiwen Gan, Chonglin Yang

PDF(18754 KB)
PDF(18754 KB)
Protein Cell ›› 2022, Vol. 13 ›› Issue (3) : 180-202. DOI: 10.1007/s13238-021-00881-4
RESEARCH ARTICLE
RESEARCH ARTICLE

A pair of transporters controls mitochondrial Zn2+ levels to maintain mitochondrial homeostasis

Author information +
History +

Abstract

Zn2+ is required for the activity of many mitochondrial proteins, which regulate mitochondrial dynamics, apoptosis and mitophagy. However, it is not understood how the proper mitochondrial Zn2+ level is achieved to maintain mitochondrial homeostasis. Using Caenorhabditis elegans, we reveal here that a pair of mitochondrion-localized transporters controls the mitochondrial level of Zn2+. We demonstrate that SLC-30A9/ZnT9 is a mitochondrial Zn2+ exporter. Loss of SLC-30A9 leads to mitochondrial Zn2+ accumulation, which damages mitochondria, impairs animal development and shortens the life span. We further identify SLC-25A25/ SCaMC-2 as an important regulator of mitochondrial Zn2+ import. Loss of SLC-25A25 suppresses the abnormal mitochondrial Zn2+ accumulation and defective mitochondrial structure and functions caused by loss of SLC-30A9. Moreover, we reveal that the endoplasmic reticulum contains the Zn2+ pool from which mitochondrial Zn2+ is imported. These findings establish the molecular basis for controlling the correct mitochondrial Zn2+ levels for normal mitochondrial structure and functions.

Keywords

mitochondria / Zn2+ transporter / C. elegans / ER-mitochondrial contact / development

Cite this article

Download citation ▾
Tengfei Ma, Liyuan Zhao, Jie Zhang, Ruofeng Tang, Xin Wang, Nan Liu, Qian Zhang, Fengyang Wang, Meijiao Li, Qian Shan, Yang Yang, Qiuyuan Yin, Limei Yang, Qiwen Gan, Chonglin Yang. A pair of transporters controls mitochondrial Zn2+ levels to maintain mitochondrial homeostasis. Protein Cell, 2022, 13(3): 180‒202 https://doi.org/10.1007/s13238-021-00881-4

References

[1]
Abuarab N, Munsey TS, Jiang LH, Li J, Sivaprasadarao A (2017) High glucose-induced ROS activates TRPM2 to trigger lysosomal membrane permeabilization and Zn2+-mediated mitochondrial fission. Sci Signal 10
CrossRef Google scholar
[2]
Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zincproteins encoded in the human genome. J Proteome Res 5: 196- 201
CrossRef Google scholar
[3]
Bian X, Teng T, Zhao H, Qin J, Qiao Z, Sun Y, Liun Z, Xu Z (2018) Zinc prevents mitochondrial superoxide generation by inducing mitophagy in the setting of hypoxia/reoxygenation in cardiac cells. Free Radic Res 52: 80- 91
CrossRef Google scholar
[4]
Bossy-Wetzel E, Talantova MV, Lee WD, Scholzke MN, Harrop A, Mathews E, Gotz T, Han J, Ellisman MH, Perkins GA et al (2004) Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 41: 351- 365
CrossRef Google scholar
[5]
Bruinsma JJ, Jirakulaporn T, Muslin AJ, Kornfeld K (2002) Zinc ions and cation diffusion facilitator proteins regulate Ras-mediated signaling. Dev Cell 2: 567- 578
CrossRef Google scholar
[6]
Chabosseau P, Tuncay E, Meur G, Bellomo EA, Hessels A, Hughes S, Johnson PR, Bugliani M, Marchetti P, Turan B et al (2014) Mitochondrial and ER-targeted eCALWY probes reveal high levels of free Zn2+. ACS Chem Biol 9: 2111- 2120
CrossRef Google scholar
[7]
Cho HM, Ryu JR, Jo Y, Seo TW, Choi YN, Kim JH, Chung JM, Cho B, Kang HC, Yu SW et al (2019) Drp1-Zip1 interaction regulates mitochondrial quality surveillance system. Mol Cell 73: 364- 376
CrossRef Google scholar
[8]
Colvin RA, Holmes WR, Fontaine CP, Maret W (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2: 306- 317
CrossRef Google scholar
[9]
del Arco A, Satrustegui J (2004) Identification of a novel human subfamily of mitochondrial carriers with calcium-binding domains. J Biol Chem 279: 24701- 24713
CrossRef Google scholar
[10]
Dineley KE, Richards LL, Votyakova TV, Reynolds IJ (2005) Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 5: 55- 65
CrossRef Google scholar
[11]
Dineley KE, Votyakova TV, Reynolds IJ (2003) Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem 85: 563- 570
CrossRef Google scholar
[12]
Fiermonte G, De Leonardis F, Todisco S, Palmieri L, Lasorsa FM, Palmieri F (2004) Identification of the mitochondrial ATP-Mg/Pi transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution. J Biol Chem 279: 30722- 30730
[13]
Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6: 449- 462
CrossRef Google scholar
[14]
Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T (2011) Zinc homeostasis and signaling in health and diseases: zinc signaling. J Biol Inorg Chem 16: 1123- 1134
CrossRef Google scholar
[15]
Gartmann L, Wex T, Grungreiff K, Reinhold D, Kalinski T, Malfertheiner P, Schutte K (2018) Expression of zinc transporters ZIP4, ZIP14 and ZnT9 in hepatic carcinogenesis: an immunohistochemical study. J Trace Elem Med Biol 49: 35- 42
CrossRef Google scholar
[16]
Gordon GW, Berry G, Liang XH, Levine B, Herman B (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74: 2702- 2713
CrossRef Google scholar
[17]
Head B, Griparic L, Amiri M, Gandre-Babbe S, van der Bliek AM (2009) Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 187: 959- 966
CrossRef Google scholar
[18]
Hofherr A, Seger C, Fitzpatrick F, Busch T, Michel E, Luan J, Osterried L, Linden F, Kramer-Zucker A, Wakimoto B et al (2018) The mitochondrial transporter SLC25A25 links ciliary TRPP2 signaling and cellular metabolism. PLoS Biol 16: e2005651
CrossRef Google scholar
[19]
Huang YZ, Pan E, Xiong ZQ, McNamara JO (2008) Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiberCA3 pyramid synapse. Neuron 57: 546- 558
CrossRef Google scholar
[20]
Jiang D, Sullivan PG, Sensi SL, Steward O, Weiss JH (2001) Zn(2+) induces permeability transition pore opening and release of proapoptotic peptides from neuronal mitochondria. J Biol Chem 276: 47524- 47529
CrossRef Google scholar
[21]
Joyal JL, Aprille JR (1992) The ATP-Mg/Pi carrier of rat liver mitochondria catalyzes a divalent electroneutral exchange. J Biol Chem 267: 19198- 19203
CrossRef Google scholar
[22]
Kambe T, Tsuji T, Hashimoto A, Itsumura N (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95: 749- 784
CrossRef Google scholar
[23]
Kanazawa T, Zappaterra M, Hasegawa A, Wright AP, NewmanSmith ED, Buttle KF, Mcdonald K, Mannella CA, Van der Bliek AM, Lu B et al (2008) The C. elegans Opa1 homologue EAT-3 Is essential for resistance to free radicals. PLoS Genet 4: 78- 84
CrossRef Google scholar
[24]
Karabulut R, Turkyilmaz Z, Sonmez K, Kumas G, Ergun S, Ergun M, Basaklar A (2013) Twenty-four genes are upregulated in patients with hypospadias. Balkan J Med Genet 16: 39- 44
CrossRef Google scholar
[25]
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10: 845- 858
CrossRef Google scholar
[26]
Kido T, Lau YC (2019) The Y-linked proto-oncogene TSPY contributes to poor prognosis of the male hepatocellular carcinoma patients by promoting the pro-oncogenic and suppressing the anti-oncogenic gene expression. Cell Biosci 9: 22
CrossRef Google scholar
[27]
Labrousse AM, Zappaterra M, Rube DA, Bliek A (1999) C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell 4: 815
CrossRef Google scholar
[28]
Li J, Cai T, Wu P, Cui Z, Chen X, Hou J, Xie Z, Xue P, Shi L, Liu P et al (2009) Proteomic analysis of mitochondria from Caenorhabditis elegans. Proteomics 9: 4539- 4553
CrossRef Google scholar
[29]
Lin W, Gao L, Chen X (2015) Protein-specific imaging of O-GlcNAcylation in single cells. ChemBioChem 16: 2571- 2575
CrossRef Google scholar
[30]
Lin YF, Schulz AM, Pellegrino MW, Lu Y, Shaham S, Haynes CM (2016) Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 533: 416- 419
CrossRef Google scholar
[31]
Lu M, Fu D (2007) Structure of the zinc transporter YiiP. Science 317: 1746- 1748
CrossRef Google scholar
[32]
Malaiyandi LM, Honick AS, Rintoul GL, Wang QJ, Reynolds IJ (2005a) Zn2+ inhibits mitochondrial movement in neurons by phosphatidylinositol 3-kinase activation. J Neurosci 25: 9507- 9514
CrossRef Google scholar
[33]
Malaiyandi LM, Vergun O, Dineley KE, Reynolds IJ (2005b) Direct visualization of mitochondrial zinc accumulation reveals uniporter-dependent and -independent transport mechanisms. J Neurochem 93: 1242- 1250
CrossRef Google scholar
[34]
Mammadova-Bach E, Braun A (2019) Zinc homeostasis in plateletrelated diseases. Int J Mol Sci 20: 5258
CrossRef Google scholar
[35]
Medvedeva YV, Weiss JH (2014) Intramitochondrial Zn2+ accumulation via the Ca2+ uniporter contributes to acute ischemic neurodegeneration. Neurobiol Dis 68: 137- 144
CrossRef Google scholar
[36]
Mishra P, Chan DC (2016) Metabolic regulation of mitochondrial dynamics. J Cell Biol 212: 379- 387
CrossRef Google scholar
[37]
Monne M, Daddabbo L, Giannossa LC, Nicolardi MC, Palmieri L, Miniero DV, Mangone A, Palmieri F (2017) Mitochondrial ATPMg/phosphate carriers transport divalent inorganic cations in complex with ATP. J Bioenerg Biomembr 49: 369- 380
CrossRef Google scholar
[38]
Nargund AM, Fiorese CJ, Pellegrino MW, Deng P, Haynes CM (2015) Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR (mt). Mol Cell 58: 123- 133
CrossRef Google scholar
[39]
Paix A, Wang Y, Smith HE, Lee CY, Calidas D, Lu T, Smith J, Schmidt H, Krause MW, Seydoux G et al (2014) Scalable and versatile genome editing using linear DNAs with microhomology to Cas9 Sites in Caenorhabditis elegans. Genetics 198: 1347- 1356
CrossRef Google scholar
[40]
Paoletti P, Ascher P, Neyton J (1997) High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J Neurosci 17: 5711- 5725
CrossRef Google scholar
[41]
Park JA, Koh JY (1999) Induction of an immediate early gene egr-1 by zinc through extracellular signal-regulated kinase activation in cortical culture: its role in zinc-induced neuronal death. J Neurochem 73: 450- 456
CrossRef Google scholar
[42]
Perez Y, Shorer Z, Liani-Leibson K, Chabosseau P, Kadir R, Volodarsky M, Halperin D, Barber-Zucker S, Shalev H, Schreiber R et al (2017) SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome. Brain 140: 928- 939
CrossRef Google scholar
[43]
Pickles S, Vigie P, Youle RJ (2018) Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 28: R170- R185
CrossRef Google scholar
[44]
Satrustegui J, Pardo B, Del Arco A (2007) Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 87: 29- 67
CrossRef Google scholar
[45]
Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10: 780- 791
CrossRef Google scholar
[46]
Singh CK, Malas KM, Tydrick C, Siddiqui IA, Iczkowski KA, Ahmad N (2016) Analysis of zinc-exporters expression in prostate cancer. Sci Rep 6: 36772
CrossRef Google scholar
[47]
Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20: 745- 754
CrossRef Google scholar
[48]
Sun Y, Day RN, Periasamy A (2011) Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Nat Protoc 6: 1324- 1340
CrossRef Google scholar
[49]
Tang R, Wang X, Zhou J, Zhang F, Zhao S, Gan Q, Zhao L, Wang F, Zhang Q, Zhang J et al (2020) Defective arginine metabolism impairs mitochondrial homeostasis in Caenorhabditis elegans. J Genet Genomics 47: 145- 156
CrossRef Google scholar
[50]
Tewari SG, Dash RK, Beard DA, Bazil JN (2012) A biophysical model of the mitochondrial ATP-Mg/P(i) carrier. Biophys J 103: 1616- 1625
CrossRef Google scholar
[51]
Xu S, Chisholm AD (2014) C. elegans epidermal wounding induces a mitochondrial ROS burst that promotes wound repair. Dev Cell 31: 48- 60
CrossRef Google scholar
[52]
Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K et al (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177: 637- 645
CrossRef Google scholar
[53]
Yang Q, Bruschweiler S, Chou JJ (2014) A self-sequestered calmodulin-like Ca2+ sensor of mitochondrial SCaMC carrier and its implication to Ca2+-dependent ATP-Mg/P(i) transport. Structure 22: 209- 217
CrossRef Google scholar
[54]
Ye X, Zeng T, Kong W, Chen LL (2020) Integrative analyses of genes associated with fulminant type 1 diabetes. J Immunol Res 2020: 1025857
[55]
Yoder JH, Chong H, Guan KL, Han M (2004) Modulation of KSR activity in Caenorhabditis elegans by Zn ions, PAR-1 kinase and PP2A phosphatase. EMBO J 23: 111- 119
CrossRef Google scholar
[56]
Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337: 1062- 1065
CrossRef Google scholar
[57]
Zhou J, Wang X, Wang M, Chang Y, Zhang F, Ban Z, Tang R, Gan Q, Wu S, Guo Y et al (2019) The lysine catabolite saccharopine impairs development by disrupting mitochondrial homeostasis. J Cell Biol 218: 580- 597
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(18754 KB)

Accesses

Citations

Detail

Sections
Recommended

/