New concepts for generating interspecies chimeras using human pluripotent stem cells

Alejandro De Los Angeles, Jun Wu

PDF(725 KB)
PDF(725 KB)
Protein Cell ›› 2022, Vol. 13 ›› Issue (4) : 234-238. DOI: 10.1007/s13238-021-00880-5
COMMENTARY
COMMENTARY

New concepts for generating interspecies chimeras using human pluripotent stem cells

Author information +
History +

Cite this article

Download citation ▾
Alejandro De Los Angeles, Jun Wu. New concepts for generating interspecies chimeras using human pluripotent stem cells. Protein Cell, 2022, 13(4): 234‒238 https://doi.org/10.1007/s13238-021-00880-5

References

[1]
Aksoy I, Rognard C, Moulin A, Marcy G, Masaraud E, Wianny F, Cortay V, Bellemin-Menard A, Doerflinger N, Dirheimer M et al (2021) Apoptosis, G1 phase stall, and premature differentiation account for low chimeric competence of human and rhesus monkey naïve pluripotent stem cells. Stem Cell Rep 16: 56- 74
CrossRef Google scholar
[2]
Das S, Koyano-Nakagawa N, Gafni O, Maeng G, Singh BN, Rasmussen T, Pan X, Choi K-D, Mickelson D, Gong W et al (2020) Generation of human endothelium in pigs deficient in ETV2. Nat Biotechnol 38: 297- 302
CrossRef Google scholar
[3]
Hu Z, Li H, Jiang H, Ren Y, Yu X, Qiu J, Stablewski AB, Zhang B, Buck MJJ, Feng J (2020) Transient inhibition of mTOR in human pluripotent stem cells enable robust formation of mouse-human chimeric embryos. Sci Adv 6: eaaz0298
CrossRef Google scholar
[4]
Hyun I (2019) Ethical standards for chimera research oversight. Methods Mol Biol 2005: 165- 171
CrossRef Google scholar
[5]
Hyun I, Clayton EW, Cong Y, Fujita M, Goldman SA, Hill LR, Monserrat N, Nakauchi H, Pedersen RA, Rooke HM et al (2021) ISSCR guidelines for the transfer of human pluripotent stem cells and their direct derivatives into animal hosts. Stem Cell Rep 16: 1409- 1415
CrossRef Google scholar
[6]
Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, Sato H, Lee YS, Usui J, Knisely AS et al (2010) Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142: 787- 799
CrossRef Google scholar
[7]
Maeng G, Das S, Greising SM, Gong W, Singh BN, Kren S, Mickelsen D, Skie E, Gafni O, Sorensen JR et al (2021) Humanized skeletal muscle in MYF5/MYOD/MYF6-null pig embryos. Nat Biomed Eng 5: 805- 814
CrossRef Google scholar
[8]
Nishimura T, Suchy FP, Bhadury J, Igarashi KJ, Charlesworth CT, Nakauchi H (2021) Generation of functional organs using a cellcompetitive niche in intra- and inter-species rodent chimeras. Cell Stem Cell 28: 141- 149
CrossRef Google scholar
[9]
Posfai E, Schell JP, Janiszewski A, Rovic I, Murray A, Bradshaw B, Yamakawa T, Pardon T, El BakkaliTalon MI et al (2021) Evaluating totipotency using criteria of increasing stringency. Nat Cell Biol 23: 49- 60
CrossRef Google scholar
[10]
Stirparo GG, Boroviak T, Guo G, Nichols J, Smith A, Bertone P (2018) Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast. Development 145: dev158501
[11]
Taei A, Kiani T, Taghizadeh Z, Moradi S, Samadian A, Mollamo-hammadi S, Sharii-Zarchi A, Guenther S, Akhlaghpour A, Abibeiglou BA et al (2020) Temporal activation of LRH-1 and RAR-G in human pluripotent stem cells induces a functional naïve-like state. EMBO Rep 21: e47533
[12]
Tan T, Wu J, Si C, Dai S, Zhang Y, Sun N, Zhang E, Shao H, Si W, Yang P et al (2021) Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo. Cell 184: 2020- 2032
CrossRef Google scholar
[13]
Theunissen TW, Friedli M, He Y, Planet E, O’Neil RC, Markoulaki S, Pontis J, Wang H, Iouranova A, Imbeault M, Duc J et al (2016) Molecular criteria for defining the naïve human pluripotent state. Cell Stem Cell 19: 502- 515
CrossRef Google scholar
[14]
Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T, Suzuki K, Bogliotti YS, Cuello C, Valencia MM et al (2017) Interspecies chimerism with mammalian pluripotent stem cells. Cell 168: 473- 486
CrossRef Google scholar
[15]
Yamaguchi T, Sato H, Kato-Itoh M, Goto T, Hara H, Sanbo M, Mizuno N, Kobayashi T, Yanagida A, Umino A et al (2017) Interspecies organogenesis generates autologous functional islets. Nature 542: 191- 196
CrossRef Google scholar
[16]
Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, Xu Y, Dong J, Wang C, Lai W et al (2017) Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell 169: 243- 257
CrossRef Google scholar
[17]
Yu L, Wei Y, Sun HX, Mahdi AK, Pinzon Arteaga CA, Sakurai M, Schmitz DA, Zheng C, Ballard ED, Li J et al (2020) Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification. Cell Stem Cell 28: 550- 567
CrossRef Google scholar
[18]
Zheng C, Hu Y, Sakurai M, Pinzon-Arteaga CA, Li J, Wei Y, Okamura D, Ravaux B, Barlow HR, Yu L et al (2021) Cell competition constitutes a barrier for interspecies chimerism. Nature 592: 272- 276
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(725 KB)

Accesses

Citations

Detail

Sections
Recommended

/