Emerging roles of spliceosome in cancer and immunity

Hui Yang, Bruce Beutler, Duanwu Zhang

PDF(2290 KB)
PDF(2290 KB)
Protein Cell ›› 2022, Vol. 13 ›› Issue (8) : 559-579. DOI: 10.1007/s13238-021-00856-5
REVIEW
REVIEW

Emerging roles of spliceosome in cancer and immunity

Author information +
History +

Abstract

Precursor messenger RNA (pre-mRNA) splicing is catalyzed by an intricate ribonucleoprotein complex called the spliceosome. Although the spliceosome is considered to be general cell “housekeeping” machinery, mutations in core components of the spliceosome frequently correlate with cellor tissue-specific phenotypes and diseases. In this review, we expound the links between spliceosome mutations, aberrant splicing, and human cancers. Remarkably, spliceosome-targeted therapies (STTs) have become efficient anti-cancer strategies for cancer patients with splicing defects. We also highlight the links between spliceosome and immune signaling. Recent studies have shown that some spliceosome gene mutations can result in immune dysregulation and notable phenotypes due to missplicing of immune-related genes. Furthermore, several core spliceosome components harbor splicing-independent immune functions within the cell, expanding the functional repertoire of these diverse proteins.

Keywords

spliceosome / splicing / cancer / innate immunity / immune dysregulation

Cite this article

Download citation ▾
Hui Yang, Bruce Beutler, Duanwu Zhang. Emerging roles of spliceosome in cancer and immunity. Protein Cell, 2022, 13(8): 559‒579 https://doi.org/10.1007/s13238-021-00856-5

References

[1]
Adler AS , McCleland ML, Yee S, Yaylaoglu M, Hussain S, Cosino E, Quinones G, Modrusan Z, Seshagiri S, Torres E ( 2014) An integrative analysis of colon cancer identifies an essential function for PRPF6 in tumor growth . Genes Dev 28: 1068– 1084
CrossRef Google scholar
[2]
Albers CA, Paul DS, Schulze H, Freson K, Stephens JC, Smethurst PA, Jolley JD, Cvejic A, Kostadima M, Bertone P ( 2012) Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome . Nat Genet 44: 435– 439
CrossRef Google scholar
[3]
Alsafadi S, Houy A, Battistella A, Popova T, Wassef M, Henry E, Tirode F, Constantinou A, Piperno-Neumann S, Roman-Roman S ( 2016) Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage . Nat Commun 7: 10615
CrossRef Google scholar
[4]
Anczukow O, Krainer AR ( 2016) Splicing-factor alterations in cancers . RNA 22: 1285– 1301
CrossRef Google scholar
[5]
Argente J, Flores R, Gutierrez-Arumi A, Verma B, Martos-Moreno GA, Cusco I, Oghabian A, Chowen JA, Frilander MJ, Perez-Jurado LA ( 2014) Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency . EMBO Mol Med 6: 299– 306
CrossRef Google scholar
[6]
Bacrot S, Doyard M, Huber C, Alibeu O, Feldhahn N, Lehalle D, Lacombe D, Marlin S, Nitschke P, Petit F ( 2015) Mutations in SNRPB, encoding components of the core splicing machinery, cause cerebro-costo-mandibular syndrome . Hum Mutat 36: 187– 190
CrossRef Google scholar
[7]
Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC ( 2016) Genomic analyses identify molecular subtypes of pancreatic cancer . Nature 531: 47– 52
CrossRef Google scholar
[8]
Baldridge MT, King KY, Goodell MA ( 2011) Inflammatory signals regulate hematopoietic stem cells . Trends Immunol 32: 57– 65
CrossRef Google scholar
[9]
Bejar R, Stevenson KE, Caughey BA, Abdel-Wahab O, Steensma DP, Galili N, Raza A, Kantarjian H, Levine RL, Neuberg D ( 2012) Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes . J Clin Oncol 30: 3376– 3382
CrossRef Google scholar
[10]
Bernier FP, Caluseriu O, Ng S, Schwartzentruber J, Buckingham KJ, Innes AM, Jabs EW, Innis JW, Schuette JL, Gorski JL ( 2012) Haploinsufficiency of SF3B4, a component of the pre-mRNA spliceosomal complex, causes Nager syndrome . Am J Hum Genet 90: 925– 933
CrossRef Google scholar
[11]
Bersanelli M, Travaglino E, Meggendorfer M, Matteuzzi T, Sala C, Mosca E, Chiereghin C, Di Nanni N, Gnocchi M, Zampini M ( 2021) Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes . J Clin Oncol 39: 1223– 1233
CrossRef Google scholar
[12]
Blaustein M, Pelisch F, Tanos T, Munoz MJ, Wengier D, Quadrana L, Sanford JR, Muschietti JP, Kornblihtt AR, Caceres JF ( 2005) Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT . Nat Struct Mol Biol 12: 1037– 1044
CrossRef Google scholar
[13]
Boguslawska J, Sokol E, Rybicka B, Czubaty A, Rodzik K, Piekielko-Witkowska A ( 2016) microRNAs target SRSF7 splicing factor to modulate the expression of osteopontin splice variants in renal cancer cells . Gene 595: 142– 149
CrossRef Google scholar
[14]
Bonnal SC, Lopez-Oreja I, Valcarcel J ( 2020) Roles and mecha-nisms of alternative splicing in cancer- implications for care . Nat Rev Clin Oncol 17: 457– 474
CrossRef Google scholar
[15]
Bowling EA, Wang JH, Gong F, Wu W, Neill NJ, Kim IS, Tyagi S, Orellana M, Kurley SJ, Dominguez-Vidana R ( 2021) Spliceosome-targeted therapies trigger an antiviral immune response in triple-negative breast cancer . Cell 184: 384– 403
CrossRef Google scholar
[16]
Brooks AN, Choi PS, de Waal L, Sharifnia T, Imielinski M, Saksena G, Pedamallu CS, Sivachenko A, Rosenberg M, Chmielecki J ( 2014) A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events . PLoS ONE 9: e87361
CrossRef Google scholar
[17]
Burge CB, Padgett RA, Sharp PA ( 1998) Evolutionary fates and origins of U12-type introns . Mol Cell 2: 773– 785
CrossRef Google scholar
[18]
Chakarova CF, Hims MM, Bolz H, Abu-Safieh L, Patel RJ, Papaioannou MG, Inglehearn CF, Keen TJ, Willis C, Moore AT ( 2002) Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa . Hum Mol Genet 11: 87– 92
CrossRef Google scholar
[19]
Chen X, Liu Y, Sheng X, Tam PO, Zhao K, Chen X, Rong W, Liu Y, Liu X, Pan X ( 2014) PRPF4 mutations cause autosomal dominant retinitis pigmentosa . Hum Mol Genet 23: 2926– 2939
CrossRef Google scholar
[20]
Corbett MA, Dudding-Byth T, Crock PA, Botta E, Christie LM, Nardo T, Caligiuri G, Hobson L, Boyle J, Mansour A ( 2015) A novel X-linked trichothiodystrophy associated with a nonsense mutation in RNF113A . J Med Genet 52: 269– 274
CrossRef Google scholar
[21]
Corbo C, Orru S, Gemei M, Noto RD, Mirabelli P, Imperlini E, Ruoppolo M, Vecchio LD, Salvatore F ( 2012) Protein cross-talk in CD133+ colon cancer cells indicates activation of the Wnt pathway and upregulation of SRp20 that is potentially involved in tumorigenicity . Proteomics 12: 2045– 2059
CrossRef Google scholar
[22]
Cvitkovic I, Jurica MS ( 2013) Spliceosome database: a tool for tracking components of the spliceosome . Nucleic Acids Res 41: D132– 141
CrossRef Google scholar
[23]
Damm F, Kosmider O, Gelsi-Boyer V, Renneville A, Carbuccia N, Hidalgo-Curtis C, Della Valle V Couronne L, Scourzic L, Chesnais V, ( 2012) Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes . Blood 119: 3211– 3218
CrossRef Google scholar
[24]
Darman RB, Seiler M, Agrawal AA, Lim KH, Peng S, Aird D, Bailey SL, Bhavsar EB, Chan B, Colla S ( 2015) Cancer-associated SF3B1 hotspot mutations induce Cryptic 3’ splice site selection through use of a different branch point . Cell Rep 13: 1033– 1045
CrossRef Google scholar
[25]
Dauber A, Golzio C, Guenot C, Jodelka FM, Kibaek M, Kjaergaard S, Leheup B, Martinet D, Nowaczyk MJ, Rosenfeld JA ( 2013) SCRIB and PUF60 are primary drivers of the multisystemic phenotypes of the 8q24.3 copy-number variant . Am J Hum Genet 93: 798– 811
CrossRef Google scholar
[26]
De Arras L, Alper S ( 2013) Limiting of the innate immune response by SF3A-dependent control of MyD88 alternative mRNA splicing . PLoS Genet 9: e1003855
CrossRef Google scholar
[27]
De Arras L, Laws R, Leach SM, Pontis K, Freedman JH, Schwartz DA, Alper S ( 2014) Comparative genomics RNAi screen identifies Eftud2 as a novel regulator of innate immunity . Genetics 197: 485– 496
CrossRef Google scholar
[28]
Deery EC, Vithana EN, Newbold RJ, Gallon VA, Bhattacharya SS, Warren MJ, Hunt DM, Wilkie SE ( 2002) Disease mechanism for retinitis pigmentosa (RP11) caused by mutations in the splicing factor gene PRPF31 . Hum Mol Genet 11: 3209– 3219
CrossRef Google scholar
[29]
Desai P, Mencia-Trinchant N, Savenkov O, Simon MS, Cheang G, Lee S, Samuel M, Ritchie EK, Guzman ML, Ballman KV ( 2018) Somatic mutations precede acute myeloid leukemia years before diagnosis . Nat Med 24: 1015– 1023
CrossRef Google scholar
[30]
Devotta A, Juraver-Geslin H, Gonzalez JA, Hong CS, Saint-Jeannet JP ( 2016) Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome . Dev Biol 415: 371– 382
CrossRef Google scholar
[31]
Dominski Z, Kole R ( 1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides . Proc Natl Acad Sci U S A 90: 8673– 8677
CrossRef Google scholar
[32]
Dvinge H, Kim E, Abdel-Wahab O, Bradley RK ( 2016) RNA splicing factors as oncoproteins and tumour suppressors . Nat Rev Cancer 16: 413– 430
CrossRef Google scholar
[33]
Edery P, Marcaillou C, Sahbatou M, Labalme A, Chastang J, Touraine R, Tubacher E, Senni F, Bober MB, Nampoothiri S ( 2011) Association of TALS developmental disorder with defect in minor splicing component U4atac snRNA . Science 332: 240– 243
CrossRef Google scholar
[34]
Elsaid MF, Chalhoub N, Ben-Omran T, Kumar P, Kamel H, Ibrahim K, Mohamoud Y, Al-Dous E, Al-Azwani I, Malek JA ( 2017) Mutation in noncoding RNA RNU12 causes early onset cerebel-lar ataxia . Ann Neurol 81: 68– 78
CrossRef Google scholar
[35]
Eymin B ( 2021) Targeting the spliceosome machinery: A new therapeutic axis in cancer? Biochem Pharmacol 189: 114039
CrossRef Google scholar
[36]
Fabrizio P, Dannenberg J, Dube P, Kastner B, Stark H, Urlaub H, Luhrmann R ( 2009) The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome . Mol Cell 36: 593– 608
CrossRef Google scholar
[37]
Fallini C, Donlin-Asp PG, Rouanet JP, Bassell GJ, Rossoll W ( 2016) Deficiency of the survival of motor neuron protein impairs mrna localization and local translation in the growth cone of motor neurons . J Neurosci 36: 3811– 3820
CrossRef Google scholar
[38]
Favaro FP, Alvizi L, Zechi-Ceide RM, Bertola D, Felix TM, de Souza J, Raskin S, Twigg SR, Weiner AM, Armas P ( 2014) A noncoding expansion in EIF4A3 causes Richieri-Costa-Pereira syndrome, a craniofacial disorder associated with limb defects . Am J Hum Genet 94: 120– 128
CrossRef Google scholar
[39]
Folco EG, Coil KE, Reed R ( 2011) The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region . Genes Dev 25: 440– 444
CrossRef Google scholar
[40]
Freund C, Kuhne R, Yang H, Park S, Reinherz EL, Wagner G ( 2002) Dynamic interaction of CD2 with the GYF and the SH3 domain of compartmentalized effector molecules . EMBO J 21: 5985– 5995
CrossRef Google scholar
[41]
Furney SJ, Pedersen M, Gentien D, Dumont AG, Rapinat A, Desjardins L, Turajlic S, Piperno-Neumann S, de la Grange P, Roman-Roman S ( 2013) SF3B1 mutations are associated with alternative splicing in uveal melanoma . Cancer Discov 3: 1122– 1129
CrossRef Google scholar
[42]
Goncalves V, Matos P, Jordan P ( 2008) The beta-catenin/TCF4 pathway modifies alternative splicing through modulation of SRp20 expression . RNA 14: 2538– 2549
CrossRef Google scholar
[43]
Graubert TA, Shen D, Ding L, Okeyo-Owuor T, Lunn CL, Shao J, Krysiak K, Harris CC, Koboldt DC, Larson DE ( 2011) Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes . Nat Genet 44: 53– 57
CrossRef Google scholar
[44]
Grignano E, Jachiet V, Fenaux P, Ades L, Fain O, Mekinian A ( 2018) Autoimmune manifestations associated with myelodysplastic syndromes . Ann Hematol 97: 2015– 2023
CrossRef Google scholar
[45]
Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, Schnittger S, Sanada M, Kon A, Alpermann T ( 2014) Landscape of genetic lesions in 944 patients with myelodysplas-tic syndromes . Leukemia 28: 241– 247
CrossRef Google scholar
[46]
Harbour JW, Roberson ED, Anbunathan H, Onken MD, Worley LA, Bowcock AM ( 2013) Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma . Nat Genet 45: 133– 135
CrossRef Google scholar
[47]
Havens MA, Hastings ML ( 2016) Splice-switching antisense oligonu-cleotides as therapeutic drugs . Nucleic Acids Res 44: 6549– 6563
CrossRef Google scholar
[48]
He H, Liyanarachchi S, Akagi K, Nagy R, Li J, Dietrich RC, Li W, Sebastian N, Wen B, Xin B ( 2011) Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I . Science 332: 238– 240
CrossRef Google scholar
[49]
Heaney ML, Golde DW ( 1999) Myelodysplasia . N Engl J Med 340: 1649– 1660
CrossRef Google scholar
[50]
Heinze M, Kofler M, Freund C ( 2007) Investigating the functional role of CD2BP2 in T cells . Int Immunol 19: 1313– 1318
CrossRef Google scholar
[51]
Ilagan JO, Ramakrishnan A, Hayes B, Murphy ME, Zebari AS, Bradley P, Bradley RK ( 2015) U2AF1 mutations alter splice site recognition in hematological malignancies . Genome Res 25: 14– 26
CrossRef Google scholar
[52]
Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, Cho J, Suh J, Capelletti M, Sivachenko A ( 2012) Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing . Cell 150: 1107– 1120
CrossRef Google scholar
[53]
Inoue D, Bradley RK, Abdel-Wahab O ( 2016) Spliceosomal gene mutations in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis . Genes Dev 30: 989– 1001
CrossRef Google scholar
[54]
Inoue D, Polaski JT, Taylor J, Castel P, Chen S, Kobayashi S, Hogg SJ, Hayashi Y, Pineda JMB, El Marabti E ( 2021) Minor intron retention drives clonal hematopoietic disorders and diverse cancer predisposition . Nat Genet 53( 5): 707– 718
CrossRef Google scholar
[55]
Ishak CA, Loo Yau H, De Carvalho DD ( 2021) Spliceosome-targeted therapies induce dsRNA responses . Immunity 54: 11– 13
CrossRef Google scholar
[56]
Ishihara T, Ariizumi Y, Shiga A, Kato T, Tan CF, Sato T, Miki Y, Yokoo M, Fujino T, Koyama A ( 2013) Decreased number of Gemini of coiled bodies and U12 snRNA level in amyotrophic lateral sclerosis . Hum Mol Genet 22: 4136– 4147
CrossRef Google scholar
[57]
Johnston JJ, Teer JK, Cherukuri PF, Hansen NF, Loftus SK, Center NIHIS, Chong K, Mullikin JC, Biesecker LG ( 2010) Massively parallel sequencing of exons on the X chromosome identifies RBM10 as the gene that causes a syndromic form of cleft palate . Am J Hum Genet 86: 743– 748
CrossRef Google scholar
[58]
Jumaa H, Nielsen PJ ( 1997) The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation . EMBO J 16: 5077– 5085
CrossRef Google scholar
[59]
Jurica MS, Moore MJ ( 2003) Pre-mRNA splicing: awash in a sea of proteins . Mol Cell 12: 5– 14
CrossRef Google scholar
[60]
Kaida D, Motoyoshi H, Tashiro E, Nojima T, Hagiwara M, Ishigami K, Watanabe H, Kitahara T, Yoshida T, Nakajima H ( 2007) Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA . Nat Chem Biol 3: 576– 583
CrossRef Google scholar
[61]
Kalscheuer VM, Freude K, Musante L, Jensen LR, Yntema HG, Gecz J, Sefiani A, Hoffmann K, Moser B, Haas S ( 2003) Mutations in the polyglutamine binding protein 1 gene cause X-linked mental retardation . Nat Genet 35: 313– 315
CrossRef Google scholar
[62]
Katsuyama T, Li H, Krishfield SM, Kyttaris VC, Moulton VR ( 2021) Splicing factor SRSF1 limits IFN-gamma production via RhoH and ameliorates experimental nephritis . Rheumatology (oxford) 60: 420– 429
CrossRef Google scholar
[63]
Kim E, Ilagan JO, Liang Y, Daubner GM, Lee SC, Ramakrishnan A, Li Y, Chung YR, Micol JB, Murphy ME ( 2015) SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition . Cancer Cell 27: 617– 630
CrossRef Google scholar
[64]
Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A ( 2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multi-system proteinopathy and ALS . Nature 495: 467– 473
CrossRef Google scholar
[65]
Kofler M, Heuer K, Zech T, Freund C ( 2004) Recognition sequences for the GYF domain reveal a possible spliceosomal function of CD2BP2 . J Biol Chem 279: 28292– 28297
CrossRef Google scholar
[66]
Koh CM, Bezzi M, Low DH, Ang WX, Teo SX, Gay FP, Al-Haddawi M, Tan SY, Osato M, Sabo A ( 2015) MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis . Nature 523: 96– 100
CrossRef Google scholar
[67]
Koizumi J, Okamoto Y, Onogi H, Mayeda A, Krainer AR, Hagiwara M ( 1999) The subcellular localization of SF2/ASF is regulated by direct interaction with SR protein kinases (SRPKs) . J Biol Chem 274: 11125– 11131
CrossRef Google scholar
[68]
Komeno Y, Huang YJ, Qiu J, Lin L, Xu Y, Zhou Y, Chen L, Monterroza DD, Li H, DeKelver RC ( 2015) SRSF2 Is Essential for Hematopoiesis, and Its Myelodysplastic Syndrome-Related Mutations Dysregulate Alternative Pre-mRNA Splicing . Mol Cell Biol 35: 3071– 3082
CrossRef Google scholar
[69]
Kong J, Sun W, Li C, Wan L, Wang S, Wu Y, Xu E, Zhang H, Lai M ( 2016) Long non-coding RNA LINC01133 inhibits epithelial-mesenchymal transition and metastasis in colorectal cancer by interacting with SRSF6 . Cancer Lett 380: 476– 484
CrossRef Google scholar
[70]
Kotake Y, Sagane K, Owa T, Mimori-Kiyosue Y, Shimizu H, Uesugi M, Ishihama Y, Iwata M, Mizui Y ( 2007) Splicing factor SF3b as a target of the antitumor natural product pladienolide . Nat Chem Biol 3: 570– 575
CrossRef Google scholar
[71]
Kurtovic-Kozaric A, Przychodzen B, Singh J, Konarska MM, Clemente MJ, Otrock ZK, Nakashima M, Hsi ED, Yoshida K, Shiraishi Y ( 2015) PRPF8 defects cause missplicing in myeloid malignancies . Leukemia 29: 126– 136
CrossRef Google scholar
[72]
Laggerbauer B, Liu S, Makarov E, Vornlocher HP, Makarova O, Ingelfinger D, Achsel T, Luhrmann R ( 2005) The human U5 snRNP 52K protein (CD2BP2) interacts with U5–102K (hPrp6), a U4/U6.U5 tri-snRNP bridging protein, but dissociates upon tri-snRNP formation . RNA 11: 598– 608
CrossRef Google scholar
[73]
Lai MC, Lin RI, Huang SY, Tsai CW, Tarn WY ( 2000) A human importin-beta family protein, transportin-SR2, interacts with the phosphorylated RS domain of SR proteins . J Biol Chem 275: 7950– 7957
CrossRef Google scholar
[74]
Lee SC, Abdel-Wahab O ( 2016) Therapeutic targeting of splicing in cancer . Nat Med 22: 976– 986
CrossRef Google scholar
[75]
Lee SC, North K, Kim E, Jang E, Obeng E, Lu SX, Liu B, Inoue D, Yoshimi A, Ki M ( 2018) Synthetic lethal and convergent biological effects of cancer-associated spliceosomal gene muta-tions . Cancer Cell 34: 225– 241
CrossRef Google scholar
[76]
Li DK, Tisdale S, Lotti F, Pellizzoni L ( 2014) SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease . Semin Cell Dev Biol 32: 22– 29
CrossRef Google scholar
[77]
Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA, Golan D, Gilad Y, Pritchard JK ( 2016) RNA splicing is a primary link between genetic variation and disease . Science 352: 600– 604
CrossRef Google scholar
[78]
Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, Pigneux A, Wetzler M, Stuart RK, Erba HP ( 2015) Acute myeloid leukemia ontogeny is defined by distinct somatic mutations . Blood 125: 1367– 1376
CrossRef Google scholar
[79]
Lines MA, Huang L, Schwartzentruber J, Douglas SL, Lynch DC, Beaulieu C, Guion-Almeida ML, Zechi-Ceide RM, Gener B, Gillessen-Kaesbach G ( 2012) Haploinsufficiency of a spliceosomal GTPase encoded by EFTUD2 causes mandibulofacial dysostosis with microcephaly . Am J Hum Genet 90: 369– 377
CrossRef Google scholar
[80]
Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu YT, Grishin NV ( 2015) Phosphorylation of innate immune-adaptor proteins MAVS, STING, and TRIF induces IRF3 activa-tion . Science 347: aaa2630
CrossRef Google scholar
[81]
Liu T, Jin X, Zhang X, Yuan H, Cheng J, Lee J, Zhang B, Zhang M, Wu J, Wang L ( 2012) A novel missense SNRNP200 mutation associated with autosomal dominant retinitis pigmen-tosa in a Chinese family . PLoS ONE 7: e45464
CrossRef Google scholar
[82]
Low KJ, Ansari M, Abou Jamra R, Clarke A, El Chehadeh S FitzPatrick DR, Greenslade M, Henderson A, Hurst J, Keller K, ( 2017) PUF60 variants cause a syndrome of ID, short stature, microcephaly, coloboma, craniofacial, cardiac, renal and spinal features . Eur J Hum Genet 25: 552– 559
CrossRef Google scholar
[83]
Lv Z, Wang Z, Luo L, Chen Y, Han G, Wang R, Xiao H, Li X, Hou C, Feng J ( 2019) Spliceosome protein Eftud2 promotes colitis-associated tumorigenesis by modulating inflammatory response of macrophage . Mucosal Immunol 12: 1164– 1173
CrossRef Google scholar
[84]
Lynch DC, Revil T, Schwartzentruber J, Bhoj EJ, Innes AM, Lamont RE, Lemire EG, Chodirker BN, Taylor JP, Zackai EH ( 2014) Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro-costo-mandibular syndrome . Nat Commun 5: 4483
CrossRef Google scholar
[85]
Madan V, Kanojia D, Li J, Okamoto R, Sato-Otsubo A, Kohlmann A, Sanada M, Grossmann V, Sundaresan J, Shiraishi Y ( 2015) Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome . Nat Commun 6: 6042
CrossRef Google scholar
[86]
Maguire SL, Leonidou A, Wai P, Marchio C, Ng CK, Sapino A, Salomon AV, Reis-Filho JS, Weigelt B, Natrajan RC ( 2015) SF3B1 mutations constitute a novel therapeutic target in breast cancer . J Pathol 235: 571– 580
CrossRef Google scholar
[87]
Malcovati L, Karimi M, Papaemmanuil E, Ambaglio I, Jadersten M, Jansson M, Elena C, Galli A, Walldin G, Della Porta MG ( 2015) SF3B1 mutation identifies a distinct subset of myelodys-plastic syndrome with ring sideroblasts . Blood 126: 233– 241
CrossRef Google scholar
[88]
Malcovati L, Papaemmanuil E, Bowen DT, Boultwood J, Della Porta MG, Pascutto C, Travaglino E, Groves MJ, Godfrey AL, Ambaglio I ( 2011) Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloprolifera-tive neoplasms . Blood 118: 6239– 6246
CrossRef Google scholar
[89]
Marques F, Tenney J, Duran I, Martin J, Nevarez L, Pogue R, Krakow D, Cohn DH, Li B ( 2016) Altered mRNA splicing, chondrocyte gene expression and abnormal skeletal development due to SF3B4 mutations in rodriguez acrofacial dysostosis . PLoS Genet 12: 1006307
CrossRef Google scholar
[90]
Martin M, Masshofer L, Temming P, Rahmann S, Metz C, Bornfeld N, van de Nes J, Klein-Hitpass L , Hinnebusch AG, Horsthemke B ( 2013) Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3 . Nat Genet 45: 933– 936
CrossRef Google scholar
[91]
Matlin AJ, Moore MJ ( 2007) Spliceosome assembly and composi-tion . Adv Exp Med Biol 623: 14– 35
CrossRef Google scholar
[92]
Maubaret CG, Vaclavik V, Mukhopadhyay R, Waseem NH, Churchill A, Holder GE, Moore AT, Bhattacharya SS, Webster AR ( 2011) Autosomal dominant retinitis pigmentosa with intrafamilial variability and incomplete penetrance in two families carrying mutations in PRPF8 . Invest Ophthalmol vis Sci 52: 9304– 9309
CrossRef Google scholar
[93]
McKie AB, McHale JC, Keen TJ, Tarttelin EE, Goliath R, van Lith-Verhoeven JJ, Greenberg J, Ramesar RS, Hoyng CB, Cremers FP ( 2001) Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13) . Hum Mol Genet 10: 1555– 1562
CrossRef Google scholar
[94]
Meggendorfer M, Roller A, Haferlach T, Eder C, Dicker F, Grossmann V, Kohlmann A, Alpermann T, Yoshida K, Ogawa S ( 2012) SRSF2 mutations in 275 cases with chronic myelomono-cytic leukemia (CMML) . Blood 120: 3080– 3088
CrossRef Google scholar
[95]
Merico D, Roifman M, Braunschweig U, Yuen RK, Alexandrova R, Bates A, Reid B, Nalpathamkalam T, Wang Z, Thiruvahindrapuram B ( 2015) Compound heterozygous mutations in the noncoding RNU4ATAC cause Roifman Syndrome by disrupting minor intron splicing . Nat Commun 6: 8718
CrossRef Google scholar
[96]
Meseguer S, Mudduluru G, Escamilla JM, Allgayer H, Barettino D ( 2011) MicroRNAs-10a and-10b contribute to retinoic acidinduced differentiation of neuroblastoma cells and target the alternative splicing regulatory factor SFRS1 (SF2/ASF) . J Biol Chem 286: 4150– 4164
CrossRef Google scholar
[97]
Moore MJ, Query CC, Sharp PA ( 1993) Splicing of precursors to mRNA by the spliceosome. In RNA World, Gesteland RF, Atkins JF, eds . (Cold Spring Harbor, New York, Cold Spring Harbor Labratory Press), pp. 303– 357
[98]
Nguyen HD, Leong WY, Li W, Reddy PNG, Sullivan JD, Walter MJ, Zou L, Graubert TA ( 2018) Spliceosome mutations induce R Loop-associated sensitivity to ATR inhibition in myelodysplastic syndromes . Cancer Res 78: 5363– 5374
CrossRef Google scholar
[99]
Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, Martincorena I, Alexandrov LB, Martin S, Wedge DC ( 2016) Landscape of somatic mutations in 560 breast cancer whole-genome sequences . Nature 534: 47– 54
CrossRef Google scholar
[100]
Nilsen TW, Graveley BR ( 2010) Expansion of the eukaryotic proteome by alternative splicing . Nature 463: 457– 463
CrossRef Google scholar
[101]
Nishanian TG, Waldman T ( 2004) Interaction of the BMPR-IA tumor suppressor with a developmentally relevant splicing factor . Biochem Biophys Res Commun 323: 91– 97
CrossRef Google scholar
[102]
Nishizawa K, Freund C, Li J, Wagner G, Reinherz EL ( 1998) Identification of a proline-binding motif regulating CD2-triggered T lymphocyte activation . Proc Natl Acad Sci U S A 95: 14897– 14902
CrossRef Google scholar
[103]
Novoyatleva T, Tang Y, Rafalska I, Stamm S ( 2006) Pre-mRNA missplicing as a cause of human disease . Prog Mol Subcell Biol 44: 27– 46
CrossRef Google scholar
[104]
O’Connor BP, Danhorn T, De Arras L, Flatley BR, Marcus RA, Farias-Hesson E, Leach SM, Alper S ( 2015) Regulation of tolllike receptor signaling by the SF3a mRNA splicing complex . PLoS Genet 11: 1004932
CrossRef Google scholar
[105]
Okeyo-Owuor T, White BS, Chatrikhi R, Mohan DR, Kim S, Griffith M, Ding L, Ketkar-Kulkarni S, Hundal J, Laird KM ( 2015) U2AF1 mutations alter sequence specificity of pre-mRNA binding and splicing . Leukemia 29: 909– 917
CrossRef Google scholar
[106]
Pagano L, Caira M ( 2012) Risks for infection in patients with myelodysplasia and acute leukemia . Curr Opin Infect Dis 25: 612– 618
CrossRef Google scholar
[107]
Paine I, Posey JE, Grochowski CM, Jhangiani SN, Rosenheck S, Kleyner R, Marmorale T, Yoon M, Wang K, Robison R ( 2019) Paralog Studies Augment Gene Discovery: DDX and DHX Genes . Am J Hum Genet 105: 302– 316
CrossRef Google scholar
[108]
Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, Pellagatti A, Wainscoat JS, Hellstrom-Lindberg E, Gambacorti-Passerini C ( 2011) Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts . N Engl J Med 365: 1384– 1395
CrossRef Google scholar
[109]
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N ( 2016) Genomic classification and prognosis in acute myeloid leukemia . N Engl J Med 374: 2209– 2221
CrossRef Google scholar
[110]
Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P Yoon CJ, Ellis P, Wedge DC, Pellagatti A, ( 2013) Clinical and biological implications of driver mutations in myelodysplastic syndromes . Blood 122: 3616– 3627
CrossRef Google scholar
[111]
Pasternack SM, Refke M, Paknia E, Hennies HC, Franz T, Schafer N, Fryer A, van Steensel M Sweeney E, Just M, ( 2013) Mutations in SNRPE, which encodes a core protein of the spliceosome, cause autosomal-dominant hypotrichosis simplex . Am J Hum Genet 92: 81– 87
CrossRef Google scholar
[112]
Patel AA, Steitz JA ( 2003) Splicing double: insights from the second spliceosome . Nat Rev Mol Cell Biol 4: 960– 970
CrossRef Google scholar
[113]
Paz S, Ritchie A, Mauer C, Caputi M ( 2021) The RNA binding protein SRSF1 is a master switch of gene expression and regulation in the immune system . Cytokine Growth Factor Rev 57: 19– 26
CrossRef Google scholar
[114]
Pellagatti A, Boultwood J ( 2015) The molecular pathogenesis of the myelodysplastic syndromes . Eur J Haematol 95: 3– 15
CrossRef Google scholar
[115]
Petit F, Escande F, Jourdain AS, Porchet N, Amiel J, Doray B, Delrue MA, Flori E, Kim CA, Marlin S ( 2014) Nager syndrome: confirmation of SF3B4 haploinsufficiency as the major cause . Clin Genet 86: 246– 251
CrossRef Google scholar
[116]
Pollyea DA, Harris C, Rabe JL, Hedin BR, De Arras L, Katz S, Wheeler E, Bejar R, Walter MJ, Jordan CT ( 2019) Myelodysplastic syndrome-associated spliceosome gene muta-tions enhance innate immune signaling . Haematologica 104: e388– e392
CrossRef Google scholar
[117]
Polprasert C, Schulze I, Sekeres MA, Makishima H, Przychodzen B, Hosono N, Singh J, Padgett RA, Gu X, Phillips JG ( 2015) Inherited and somatic defects in DDX41 in myeloid neoplasms . Cancer Cell 27: 658– 670
CrossRef Google scholar
[118]
Qi Z, Wang F, Yu G, Wang D, Yao Y, You M, Liu J, Liu J, Sun Z, Ji C ( 2021) SRSF1 serves as a critical posttranscriptional regulator at the late stage of thymocyte development . Sci Adv 7: eabf0753
CrossRef Google scholar
[119]
Quemener AM, Bachelot L, Forestier A, Donnou-Fournet E, Gilot D, Galibert MD ( 2020) The powerful world of antisense oligonu-cleotides: From bench to bedside . Wiley Interdiscip Rev RNA 11: 1594
CrossRef Google scholar
[120]
Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bas-saganyas L, Ramsay AJ, Bea S, Pinyol M, Martinez-Trillos A ( 2011) Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia . Nat Genet 44: 47– 52
CrossRef Google scholar
[121]
Rahman MA, Krainer AR, Abdel-Wahab O ( 2020) SnapShot: Splicing Alterations in Cancer . Cell 180: 208– 208
CrossRef Google scholar
[122]
Reber S, Stettler J, Filosa G, Colombo M, Jutzi D, Lenzken SC, Schweingruber C, Bruggmann R, Bachi A, Barabino SM ( 2016) Minor intron splicing is regulated by FUS and affected by ALS-associated FUS mutants . EMBO J 35: 1504– 1521
CrossRef Google scholar
[123]
Rivolta C, McGee TL, Rio Frio T, Jensen RV, Berson EL, Dryja TP ( 2006) Variation in retinitis pigmentosa-11 (PRPF31 or RP11) gene expression between symptomatic and asymptomatic patients with dominant RP11 mutations . Hum Mutat 27: 644– 653
CrossRef Google scholar
[124]
Rossbach O, Hung LH, Schreiner S, Grishina I, Heiner M, Hui J, Bindereif A ( 2009) Auto- and cross-regulation of the hnRNP L proteins by alternative splicing . Mol Cell Biol 29: 1442– 1451
CrossRef Google scholar
[125]
Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M, Fangazio M, Vaisitti T, Monti S, Chiaretti S ( 2011) Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness . Blood 118: 6904– 6908
CrossRef Google scholar
[126]
Ruzickova S, Stanek D ( 2017) Mutations in spliceosomal proteins and retina degeneration . RNA Biol 14: 544– 552
CrossRef Google scholar
[127]
Scott LM, Rebel VI ( 2013) Acquired mutations that affect pre-mRNA splicing in hematologic malignancies and solid tumors . J Natl Cancer Inst 105: 1540– 1549
CrossRef Google scholar
[128]
Scotti MM, Swanson MS ( 2016) RNA mis-splicing in disease . Nat Rev Genet 17: 19– 32
CrossRef Google scholar
[129]
Sebestyen E, Singh B, Minana B, Pages A, Mateo F, Pujana MA, Valcarcel J, Eyras E ( 2016) Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks . Genome Res 26: 732– 744
CrossRef Google scholar
[130]
Shannon JL, Murphy MS, Kantheti U, Burnett JM, Hahn MG, Dorrity TJ, Bacas CJ, Mattice EB, Corpuz KD, Barker BR ( 2018) Polyglutamine binding protein 1 (PQBP1) inhibits innate immune responses to cytosolic DNA . Mol Immunol 99: 182– 190
CrossRef Google scholar
[131]
Shi Y ( 2017a) Mechanistic insights into precursor messenger RNA splicing by the spliceosome . Nat Rev Mol Cell Biol 18: 655– 670
CrossRef Google scholar
[132]
Shi Y ( 2017b) The spliceosome: a protein-directed metalloribozyme . J Mol Biol 429: 2640– 2653
CrossRef Google scholar
[133]
Shirai CL, Ley JN, White BS, Kim S, Tibbitts J, Shao J, Ndonwi M, Wadugu B, Duncavage EJ, Okeyo-Owuor T ( 2015) Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo . Cancer Cell 27: 631– 643
CrossRef Google scholar
[134]
Shostak K, Jiang Z, Charloteaux B, Mayer A, Habraken Y, Tharun L, Klein S, Xu X, Duong HQ, Vislovukh A ( 2020) The X-linked trichothiodystrophy-causing gene RNF113A links the spliceosome to cell survival upon DNA damage . Nat Commun 11: 1270
CrossRef Google scholar
[135]
Sidhar SK, Clark J, Gill S, Hamoudi R, Crew AJ, Gwilliam R, Ross M, Linehan WM, Birdsall S, Shipley J ( 1996) The t(X;1)(p11.2; q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene . Hum Mol Genet 5: 1333– 1338
CrossRef Google scholar
[136]
Singh R, Gupta SC, Peng WX, Zhou N, Pochampally R, Atfi A, Watabe K, Lu Z, Mo YY ( 2016) Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis . Cell Death Dis 7: e2262
CrossRef Google scholar
[137]
Singh RK, Cooper TA ( 2012) Pre-mRNA splicing in disease and therapeutics . Trends Mol Med 18: 472– 482
CrossRef Google scholar
[138]
Smith MA, Choudhary GS, Pellagatti A, Choi K, Bolanos LC, Bhagat TD, Gordon-Mitchell S, Von Ahrens D Pradhan K, Steeples V, ( 2019) U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies . Nat Cell Biol 21: 640– 650
CrossRef Google scholar
[139]
Spitali P, Aartsma-Rus A ( 2012) Splice modulating therapies for human disease . Cell 148: 1085– 1088
CrossRef Google scholar
[140]
Staley JP, Woolford JL Jr ( 2009) Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines . Curr Opin Cell Biol 21: 109– 118
CrossRef Google scholar
[141]
Starczynowski DT, Karsan A ( 2010a) Deregulation of innate immune signaling in myelodysplastic syndromes is associated with deletion of chromosome-arm 5q . Cell Cycle 9: 855– 856
CrossRef Google scholar
[142]
Starczynowski DT, Karsan A ( 2010b) Innate immune signaling in the myelodysplastic syndromes . Hematol Oncol Clin North Am 24: 343– 359
CrossRef Google scholar
[143]
Sureau A, Gattoni R, Dooghe Y, Stevenin J, Soret J ( 2001) SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs . EMBO J 20: 1785– 1796
CrossRef Google scholar
[144]
Suzuki H, Kumar SA, Shuai S, Diaz-Navarro A, Gutierrez-Fernandez A, De Antonellis P Cavalli FMG, Juraschka K, Farooq H, Shibahara I, ( 2019) Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma . Nature 574: 707– 711
CrossRef Google scholar
[145]
Tanackovic G, Ransijn A, Ayuso C, Harper S, Berson EL, Rivolta C ( 2011a) A missense mutation in PRPF6 causes impairment of pre-mRNA splicing and autosomal-dominant retinitis pigmentosa . Am J Hum Genet 88: 643– 649
CrossRef Google scholar
[146]
Tanackovic G, Ransijn A, Thibault P, Abou Elela S, Klinck R, Berson EL, Chabot B, Rivolta C ( 2011b) PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa . Hum Mol Genet 20: 2116– 2130
CrossRef Google scholar
[147]
Taylor J, Lee SC ( 2019) Mutations in spliceosome genes and therapeutic opportunities in myeloid malignancies . Genes Chro-mosomes Cancer 58: 889– 902
CrossRef Google scholar
[148]
Tisdale S, Lotti F, Saieva L, Van Meerbeke JP, Crawford TO, Sumner CJ, Mentis GZ, Pellizzoni L ( 2013) SMN is essential for the biogenesis of U7 small nuclear ribonucleoprotein and 3’-end formation of histone mRNAs . Cell Rep 5: 1187– 1195
CrossRef Google scholar
[149]
Tooley M, Lynch D, Bernier F, Parboosingh J, Bhoj E, Zackai E, Calder A, Itasaki N, Wakeling E, Scott R ( 2016) Cerebrocosto-mandibular syndrome: Clinical, radiological, and genetic findings . Am J Med Genet A 170A: 1115– 1126
CrossRef Google scholar
[150]
Towns KV, Kipioti A, Long V, McKibbin M, Maubaret C, Vaclavik V, Ehsani P, Springell K, Kamal M, Ramesar RS ( 2010) Prognosis for splicing factor PRPF8 retinitis pigmentosa, novel mutations and correlation between human and yeast phenotypes . Hum Mutat 31: E1361– 1376
CrossRef Google scholar
[151]
Tremblay N, Baril M, Chatel-Chaix L, Es-Saad S, Park AY, Koenekoop RK, Lamarre D ( 2016) Spliceosome SNRNP200 promotes viral RNA sensing and IRF3 activation of antiviral response . PLoS Pathog 12: e1005772
CrossRef Google scholar
[152]
Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA ( 2010) The nuclearretained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation . Mol Cell 39: 925– 938
CrossRef Google scholar
[153]
Turunen JJ, Niemela EH, Verma B, Frilander MJ ( 2013) The significant other: splicing by the minor spliceosome . Wiley Interdiscip Rev RNA 4: 61– 76
CrossRef Google scholar
[154]
Turunen JJ, Will CL, Grote M, Luhrmann R, Frilander MJ ( 2008) The U11–48K protein contacts the 5’ splice site of U12-type introns and the U11–59K protein . Mol Cell Biol 28: 3548– 3560
CrossRef Google scholar
[155]
Ueno T, Taga Y, Yoshimoto R, Mayeda A, Hattori S, Ogawa-Goto K ( 2019) Component of splicing factor SF3b plays a key role in translational control of polyribosomes on the endoplasmic retic-ulum . Proc Natl Acad Sci U S A 116: 9340– 9349
CrossRef Google scholar
[156]
Urbanski LM, Leclair N, Anczukow O ( 2018) Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics . Wiley Interdiscip Rev RNA 9: 1476
CrossRef Google scholar
[157]
Venables JP, Brosseau JP, Gadea G, Klinck R, Prinos P, Beaulieu JF, Lapointe E, Durand M, Thibault P, Tremblay K ( 2013) RBFOX2 is an important regulator of mesenchymal tissuespecific splicing in both normal and cancer tissues . Mol Cell Biol 33: 396– 405
CrossRef Google scholar
[158]
Verduci L, Simili M, Rizzo M, Mercatanti A, Evangelista M, Mariani L, Rainaldi G, Pitto L( 2010) MicroRNA (miRNA)-mediated interact-tion between leukemia/lymphoma-related factor (LRF) and alternative splicing factor/splicing factor 2 (ASF/SF2) affects mouse embryonic fibroblast senescence and apoptosis . J Biol Chem 285: 39551– 39563
CrossRef Google scholar
[159]
Verkerk A, Zeidler S, Breedveld G, Overbeek L, Huigh D, Koster L, van der Linde H, de Esch C, Severijnen LA, de Vries BBA ( 2018) CXorf56, a dendritic neuronal protein, identified as a new candidate gene for X-linked intellectual disability . Eur J Hum Genet 26: 552– 560
CrossRef Google scholar
[160]
Verma B, Akinyi MV, Norppa AJ, Frilander MJ ( 2018) Minor spliceosome and disease . Semin Cell Dev Biol 79: 103– 112
CrossRef Google scholar
[161]
Visconte V, Makishima H, Jankowska A, Szpurka H, Traina F, Jerez A, O’Keefe C, Rogers HJ, Sekeres MA, Maciejewski JP ( 2012a) SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts . Leukemia 26: 542– 545
CrossRef Google scholar
[162]
Visconte V, Rogers HJ, Singh J, Barnard J, Bupathi M, Traina F, McMahon J, Makishima H, Szpurka H, Jankowska A ( 2012b) SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes . Blood 120: 3173– 3186
CrossRef Google scholar
[163]
Vithana EN, Abu-Safieh L, Allen MJ, Carey A, Papaioannou M, Chakarova C, Al-Maghtheh M, Ebenezer ND, Willis C, Moore AT ( 2001) A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11) . Mol Cell 8: 375– 381
CrossRef Google scholar
[164]
Wahl MC, Will CL, Luhrmann R ( 2009) The spliceosome: design principles of a dynamic RNP machine . Cell 136: 701– 718
CrossRef Google scholar
[165]
Wang GS, Cooper TA ( 2007) Splicing in disease: disruption of the splicing code and the decoding machinery . Nat Rev Genet 8: 749– 761
CrossRef Google scholar
[166]
Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L ( 2011) SF3B1 and other novel cancer genes in chronic lymphocytic leukemia . N Engl J Med 365: 2497– 2506
CrossRef Google scholar
[167]
Wassarman DA, Steitz JA ( 1992) Interactions of small nuclear RNA’s with precursor messenger RNA during in vitro splicing . Science 257: 1918– 1925
CrossRef Google scholar
[168]
Watanabe H, Shionyu M, Kimura T, Kimata K, Watanabe H ( 2007) Splicing factor 3b subunit 4 binds BMPR-IA and inhibits osteo-chondral cell differentiation . J Biol Chem 282: 20728– 20738
CrossRef Google scholar
[169]
Waterfall JJ, Arons E, Walker RL, Pineda M, Roth L, Killian JK, Abaan OD, Davis SR, Kreitman RJ, Meltzer PS ( 2014) High prevalence of MAP2K1 mutations in variant and IGHV4-34- expressing hairy-cell leukemias . Nat Genet 46: 8– 10
CrossRef Google scholar
[170]
Wieczorek D, Gener B, Gonzalez MJ, Seland S, Fischer S, Hehr U, Kuechler A, Hoefsloot LH, de Leeuw N, Gillessen-Kaesbach G ( 2009) Microcephaly, microtia, preauricular tags, choanal atresia and developmental delay in three unrelated patients: a mandibulofacial dysostosis distinct from Treacher Collins syn-drome . Am J Med Genet A 149A: 837– 843
CrossRef Google scholar
[171]
Wieczorek D, Newman WG, Wieland T, Berulava T, Kaffe M, Falkenstein D, Beetz C, Graf E, Schwarzmayr T, Douzgou S ( 2014) Compound heterozygosity of low-frequency promoter deletions and rare loss-of-function mutations in TXNL4A causes Burn-McKeown syndrome . Am J Hum Genet 95: 698– 707
CrossRef Google scholar
[172]
Will CL, Luhrmann R ( 2011) Spliceosome structure and function . Cold Spring Harb Perspect Biol 3: a003707
CrossRef Google scholar
[173]
Will CL, Luhrmann R ( 2006) Spliceosome structure and function. In The RNA World, Gesteland RF et al, eds. (Cold Spring Harbor, New York, Cold Spring Harbor Laboratory Press), pp. 369– 400
[174]
Wu S, Romfo CM, Nilsen TW, Green MR ( 1999) Functional recognition of the 3’ splice site AG by the splicing factor U2AF35 . Nature 402: 832– 835
CrossRef Google scholar
[175]
Xiong F, Liu HH, Duan CY, Zhang BK, Wei G, Zhang Y, Li S ( 2019) Arabidopsis JANUS Regulates Embryonic Pattern Formation through Pol II-Mediated Transcription of WOX2 and PIN7 . iScience 19: 1179– 1188
CrossRef Google scholar
[176]
Xu M, Xie YA, Abouzeid H, Gordon CT, Fiorentino A, Sun Z, Lehman A, Osman IS, Dharmat R, Riveiro-Alvarez R ( 2017) Mutations in the spliceosome component CWC27 cause retinal degeneration with or without additional developmental anoma-lies . Am J Hum Genet 100: 592– 604
CrossRef Google scholar
[177]
Yip BH, Dolatshad H, Roy S, Pellagatti A, Boultwood J ( 2016) Impact of splicing factor mutations on pre-mrna splicing in the myelodysplastic syndromes . Curr Pharm Des 22: 2333– 2344
CrossRef Google scholar
[178]
Yoh SM, Schneider M, Seifried J, Soonthornvacharin S, Akleh RE, Olivieri KC, De Jesus PD Ruan C, de Castro E, Ruiz PA, ( 2015) PQBP1 Is a proximal sensor of the cGAS-dependent innate response to HIV-1 . Cell 161: 1293– 1305
CrossRef Google scholar
[179]
Yoshida K, Ogawa S ( 2014) Splicing factor mutations and cancer . Wiley Interdiscip Rev RNA 5: 445– 459
CrossRef Google scholar
[180]
Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y, Sato-Otsubo A, Kon A, Nagasaki M ( 2011) Frequent pathway mutations of splicing machinery in myelodysplasia . Nature 478: 64– 69
CrossRef Google scholar
[181]
Yoshida T, Kim JH, Carver K, Su Y, Weremowicz S, Mulvey L, Yamamoto S, Brennan C, Mei S, Long H ( 2015) CLK2 Is an Oncogenic Kinase and Splicing Regulator in Breast Cancer . Cancer Res 75: 1516– 1526
CrossRef Google scholar
[182]
Zhang D, Hu Q, Liu X, Ji Y, Chao HP, Liu Y, Tracz A, Kirk J, Buonamici S, Zhu P ( 2020) Intron retention is a hallmark and spliceosome represents a therapeutic vulnerability in aggressive prostate cancer . Nat Commun 11: 2089
CrossRef Google scholar
[183]
Zhang D, Yue T, Choi JH, Nair-Gill E, Zhong X, Wang KW, Zhan X, Li X, Choi M, Tang M ( 2019) Syndromic immune disorder caused by a viable hypomorphic allele of spliceosome compo-nent Snrnp40 . Nat Immunol 20: 1322– 1334
CrossRef Google scholar
[184]
Zhang J, Lieu YK, Ali AM, Penson A, Reggio KS, Rabadan R, Raza A, Mukherjee S, Manley JL ( 2015) Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities . Proc Natl Acad Sci U S A 112: E4726– 4734
CrossRef Google scholar
[185]
Zhang J, Manley JL ( 2013) Misregulation of pre-mRNA alternative splicing in cancer . Cancer Discov 3: 1228– 1237
CrossRef Google scholar
[186]
Zhang S, Wei JS, Li SQ, Badgett TC, Song YK, Agarwal S, Coarfa C, Tolman C, Hurd L, Liao H ( 2016a) MYCN controls an alternative RNA splicing program in high-risk metastatic neurob-lastoma . Cancer Lett 371: 214– 224
CrossRef Google scholar
[187]
Zhang SJ, Rampal R, Manshouri T, Patel J, Mensah N, Kayserian A, Hricik T, Heguy A, Hedvat C, Gonen M ( 2012) Genetic analysis of patients with leukemic transformation of myeloprolif-erative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome . Blood 119: 4480– 4485
CrossRef Google scholar
[188]
Zhang Z, Zhou N, Huang J, Ho TT, Zhu Z, Qiu Z, Zhou X, Bai C, Wu F, Xu M ( 2016b) Regulation of androgen receptor splice variant AR3 by PCGEM1 . Oncotarget 7: 15481– 15491
CrossRef Google scholar
[189]
Zhao C, Lu S, Zhou X, Zhang X, Zhao K, Larsson C ( 2006) A novel locus (RP33) for autosomal dominant retinitis pigmentosa mapping to chromosomal region 2cen-q12.1 . Hum Genet 119: 617– 623
CrossRef Google scholar
[190]
Zhong XY, Ding JH, Adams JA, Ghosh G, Fu XD ( 2009) Regulation of SR protein phosphorylation and alternative splicing by modulating kinetic interactions of SRPK1 with molecular chaperones . Genes Dev 23: 482– 495
CrossRef Google scholar
[191]
Zhou Z, Qiu J, Liu W, Zhou Y, Plocinik RM, Li H, Hu Q, Ghosh G, Adams JA, Rosenfeld MG ( 2012) The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus . Mol Cell 47: 422– 433
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(2290 KB)

Accesses

Citations

Detail

Sections
Recommended

/