Cell-cycle length of medial ganglionic eminence progenitors contributes to interneuron fate

Ni Zong, Min Wang, Yinghui Fu, Dan Shen, Yong-Chun Yu

PDF(2596 KB)
PDF(2596 KB)
Protein Cell ›› 2022, Vol. 13 ›› Issue (2) : 141-147. DOI: 10.1007/s13238-021-00851-w
LETTER
LETTER

Cell-cycle length of medial ganglionic eminence progenitors contributes to interneuron fate

Author information +
History +

Cite this article

Download citation ▾
Ni Zong, Min Wang, Yinghui Fu, Dan Shen, Yong-Chun Yu. Cell-cycle length of medial ganglionic eminence progenitors contributes to interneuron fate. Protein Cell, 2022, 13(2): 141‒147 https://doi.org/10.1007/s13238-021-00851-w

References

[1]
Arai Y, Pulvers JN, Haffner C, Schilling B, Nüsslein I, Calegari F, Huttner WB (2011) Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat Commun 2:154
CrossRef Google scholar
[2]
Boyd JL, Skove SL, Rouanet JP, Pilaz LJ, Bepler T, Gordân R, Wray GA, Silver DL (2015) Human-Chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex. Curr Biol 25:772–779
CrossRef Google scholar
[3]
Butt SJ, Fuccillo M, Nery S, Noctor S, Kriegstein A, Corbin JG, Fishell G (2005) The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48:591–604
CrossRef Google scholar
[4]
Chenn A, McConnell SK (1995) Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82:631–641
CrossRef Google scholar
[5]
De la Cruz E, Zhao M, Guo L, Ma H, Anderson SA, Schwartz TH (2011) Interneuron progenitors attenuate the power of acute focal ictal discharges. Neurotherapeutics 8:763–773
CrossRef Google scholar
[6]
Hardwick LJA, Ali FR, Azzarelli R, Philpott A (2015) Cell cycle regulation of proliferation versus differentiation in the central nervous system. Cell Tissue Res 359:187–200
CrossRef Google scholar
[7]
Hashimoto T, Volk DW, Eggan SM (2003) Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 23:6315–6326
CrossRef Google scholar
[8]
Haydar TF, Ang E, Rakic P (2003) Mitotic spindle rotation and mode of cell division in the developing telencephalon. Proc Natl Acad Sci USA 100:2890–2895
CrossRef Google scholar
[9]
Inan M, Welagen J, Anderson SA (2012) Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. Cereb Cortex 22:820–827
CrossRef Google scholar
[10]
Marín O (2012) Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci 13:107–120
CrossRef Google scholar
[11]
Ohnuma S, Harris WA (2003) Neurogenesis and the cell cycle. Neuron 40:199–208
CrossRef Google scholar
[12]
Pilaz L-J, McMahon JJ, Miller EE (2016) Prolonged mitosis of neural progenitors alters cell fate in the developing brain. Neuron 89:83–99
CrossRef Google scholar
[13]
Polyak K, Kato JY, Solomon MJ (1994) p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8:9–22
CrossRef Google scholar
[14]
Southwell DG, Paredes MF, Galvao RP (2012) Intrinsically determined cell death of developing cortical interneurons. Nature 491:109–113
CrossRef Google scholar
[15]
Valcanis H, Tan S-S (2003) Layer specification of transplanted interneurons in developing mouse neocortex. J Neurosci 23:5113–5122
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(2596 KB)

Accesses

Citations

Detail

Sections
Recommended

/