Structural and molecular basis for foot-and-mouth disease virus neutralization by two potent protective antibodies
Hu Dong, Pan Liu, Manyuan Bai, Kang Wang, Rui Feng, Dandan Zhu, Yao Sun, Suyu Mu, Haozhou Li, Michiel Harmsen, Shiqi Sun, Xiangxi Wang, Huichen Guo
Structural and molecular basis for foot-and-mouth disease virus neutralization by two potent protective antibodies
[1] |
Dang M , Wang X , Wang Q , Wang Y , Lin J , Sun Y , Li X , Zhang L , Lou Z , Wang J et al (2014) Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71. Protein & Cell 5: 692- 703
|
[2] |
Harmsen MM , van Solt CB , Fijten HP , van Keulen L , Rosalia RA , Weerdmeester K , Cornelissen AH , De Bruin MG , Eble PL , Dekker A (2007) Passive immunization of guinea pigs with llama single-domain antibody fragments against foot-and-mouth disease. Vet Microbiol 120: 193- 206
|
[3] |
Harmsen MM , Fijten HPD , Westra DF , Coco-Martin JM (2011) Effect of thiomersal on dissociation of intact (146S) foot-and-mouth disease virions into 12S particles as assessed by novel ELISAs specific for either 146S or 12S particles. Vaccine 29: 2682- 2690
|
[4] |
Harmsen MM , Seago J , Perez E , Charleston B , Eble PL , Dekker A (2017) Isolation of single-domain antibody fragments that preferentially detect intact (146S) particles of foot-and-mouth disease virus for use in vaccine quality control. Front Immunol.
CrossRef
Google scholar
|
[5] |
Kotecha A , Wang Q , Dong XC , Ilca SL , Ondiviela M , Zihe R , Seago J , Charleston B , Fry EE , Abrescia NGA , Springer TA , Huiskonen JT , Stuart DI (2017) Rules of engagement between αvβ6 integrin and foot-and-mouth disease virus. Nat Commun 8: 8
|
[6] |
Logan D , Abu-Ghazaleh R , Blakemore W , Curry S , Jackson T , King A , Lea S , Lewis R , Newman J , Parry N et al (1993) Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 362: 566- 568
|
[7] |
Juleff N , Windsor M , Lefevre EA , Gubbins S , Hamblin P , Reid E , McLaughlin K , Beverley PCL , Morrison IW , Charleston B (2009) Foot-and-mouth disease virus can induce a specific and rapid CD4(+) T-cell-independent neutralizing and isotype classswitched antibody response in Naive Cattle. J Virol 83: 3626- 3636
|
[8] |
McCahon D , Crowther JR , Belsham GJ , Kitson JD , Duchesne M , Have P , Meloen RH , Morgan DO , De Simone F (1989) Evidence for at least four antigenic sites on type O foot-and-mouth disease virus involved in neutralization; identification by single and multiple site monoclonal antibody-resistant mutants. J Gen Virol 70(Pt 3): 639- 645
|
[9] |
Pay TW , Hingley PJ (1987) Correlation of 140S antigen dose with the serum neutralizing antibody response and the level of protection induced in cattle by foot-and-mouth disease vaccines. Vaccine 5: 60- 64
|
[10] |
Paton DJ , Sumption KJ , Charleston B (2009) Options for control of foot-and-mouth disease: knowledge, capability and policy. Philos Trans R Soc Lond B 364: 2657- 2667
|
[11] |
SaCarvalho D , Rieder E , Baxt B , Rodarte R , Tanuri A , Mason PW (1997) Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol 71: 5115- 5123
|
[12] |
Qiu X , Lei Y , Yang P , Gao Q , Wang N , Cao L , Yuan S , Huang X , Deng Y , Ma W et al (2018) Structural basis for neutralization of Japanese encephalitis virus by two potent therapeutic antibodies. Nat Microbiol 3: 287- 294
|
[13] |
Tuthill TJ , Groppelli E , Hogle JM , Rowlands DJ (2010) Picornaviruses. In: Cell entry by non-enveloped viruses. Springer, pp 43- 89
|
[14] |
Wang N , Zhao D , Wang J , Zhang Y , Wang M , Gao Y , Li F , Wang J , Bu Z , Rao Z et al (2019) Architecture of African swine fever virus and implications for viral assembly. Science 366: 640- 644
|
[15] |
Zhu L , Xu K , Wang N , Cao L , Wu J , Gao Q , Fry EE , Stuart DI , Rao Z , Wang J et al (2018) Neutralization mechanisms of two highly potent antibodies against human enterovirus 71. MBio 9: 66- 69
|
/
〈 | 〉 |