Indiscriminate ssDNA cleavage activity of CRISPR-Cas12a induces no detectable off-target effects in mouse embryos

Yu Wei, Yingsi Zhou, Yajing Liu, Wenqin Ying, Ruiming Lv, Qimeng Zhao, Haibo Zhou, Erwei Zuo, Yidi Sun, Hui Yang, Changyang Zhou

PDF(1152 KB)
PDF(1152 KB)
Protein Cell ›› 2021, Vol. 12 ›› Issue (9) : 741-745. DOI: 10.1007/s13238-021-00824-z
LETTER
LETTER

Indiscriminate ssDNA cleavage activity of CRISPR-Cas12a induces no detectable off-target effects in mouse embryos

Author information +
History +

Cite this article

Download citation ▾
Yu Wei, Yingsi Zhou, Yajing Liu, Wenqin Ying, Ruiming Lv, Qimeng Zhao, Haibo Zhou, Erwei Zuo, Yidi Sun, Hui Yang, Changyang Zhou. Indiscriminate ssDNA cleavage activity of CRISPR-Cas12a induces no detectable off-target effects in mouse embryos. Protein Cell, 2021, 12(9): 741‒745 https://doi.org/10.1007/s13238-021-00824-z

References

[1]
Buchman A, Brogan DJ, Sun R, Yang T,Hsu P, Akbari OS (2020) Programmable RNA targeting using CasRx in flies. CRISPR J.https://doi.org/10.1089/crispr.2020.0018
CrossRef Google scholar
[2]
Campa CC, Weisbach NR, Santinha AJ, Incarnato D, Platt RJ (2019) Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat Methods 16:887–893
CrossRef Google scholar
[3]
Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–439
CrossRef Google scholar
[4]
Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360:439
CrossRef Google scholar
[5]
Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V,Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A,Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438
CrossRef Google scholar
[6]
Kim Y, Cheong SA, Lee JG, Lee SW, Lee MS, Baek IJ, Sung YH (2016) Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol 34:808–810
CrossRef Google scholar
[7]
Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Keith Joung J (2016) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34:869–874
CrossRef Google scholar
[8]
Koo T, Park SW, Jo DH, Kim D, Kim JH, Cho H-Y, Kim J, Kim JH, Kim J-S (2018) CRISPR-LbCpf1 prevents choroidal neovascularization in a mouse model of age-related macular degeneration. Nat Commun 9:1855
CrossRef Google scholar
[9]
Sancar A, Lindsey-Boltz LA, Ünsal-Kaçmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85
CrossRef Google scholar
[10]
Li S, Cheng Q-X, Liu J-K, Nie X-Q, Zhao G-P, Wang J (2018) CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res 28:1
CrossRef Google scholar
[11]
Wang Q, Liu X, Zhou J, Yang C, Wang G, Tan Y, Wu Y, Zhang S, Yi K, Kang C (2019) The CRISPR-Cas13a gene-editing system induces collateral cleavage of RNA in glioma cells. Adv Sci 6:1901299
CrossRef Google scholar
[12]
Zetsche B,Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P,Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNAguided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771
CrossRef Google scholar
[13]
Zhang Y, Feng Y, Chatterjee S, Tuske S, Ho MX, Arnold E, Ebright RH (2012) Structural basis of transcription initiation. Science (New York, NY) 338:1076–1080
CrossRef Google scholar
[14]
Zuo E, Sun Y, Wei W, Yuan T, Ying W, Sun H, Yuan L, Steinmetz LM, Li Y, Yang H (2019) Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364:289–292
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 The Author(s)
AI Summary AI Mindmap
PDF(1152 KB)

Accesses

Citations

Detail

Sections
Recommended

/