O-GlcNAc transferase regulates centriole behavior and intraflagellar transport to promote ciliogenesis
Fan Yu, Te Li, Yanchao Sui, Qingxia Chen, Song Yang, Jia Yang, Renjie Hong, Dengwen Li, Xiumin Yan, Wei Zhao, Xueliang Zhu, Jun Zhou
O-GlcNAc transferase regulates centriole behavior and intraflagellar transport to promote ciliogenesis
[1] |
Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820
CrossRef
Google scholar
|
[2] |
Hardiville S, Hart GW (2014) Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab 20:208–213
CrossRef
Google scholar
|
[3] |
Jiang J, Lazarus MB, Pasquina L, Sliz P, Walker S (2011) A neutral diphosphate mimic crosslinks the active site of human O-GlcNAc transferase. Nat Chem Biol 8:72–77
CrossRef
Google scholar
|
[4] |
Jinek M, Rehwinkel J, Lazarus BD, Izaurralde E, Hanover JA, Conti E (2004) The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat Struct Mol Biol 11:1001–1007
CrossRef
Google scholar
|
[5] |
Marquardt JR, Perkins JL, Beuoy KJ, Fisk HA (2016) Modular elements of the TPR domain in the Mps1 N terminus differentially target Mps1 to the centrosome and kinetochore. Proc Natl Acad Sci USA 113:7828–7833
CrossRef
Google scholar
|
[6] |
Ran J, Liu M, Feng J, Li H, Ma H, Song T, Cao Y, Zhou P, Wu Y, Yang Y
CrossRef
Google scholar
|
[7] |
Schou KB, Morthorst SK, Christensen ST, Pedersen LB (2014) Identification of conserved, centrosome-targeting ASH domains in TRAPPII complex subunits and TRAPPC8. Cilia 3:6
CrossRef
Google scholar
|
[8] |
Tang Z, Lin MG, Stowe TR, Chen S, Zhu M, Stearns T, Franco B, Zhong Q (2013) Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502:254–257
CrossRef
Google scholar
|
[9] |
Tugendreich S, Tomkiel J, Earnshaw W, Hieter P (1995) CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81:261–268
CrossRef
Google scholar
|
[10] |
Yang X, Qian K (2017) Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol 18:452–465
CrossRef
Google scholar
|
[11] |
Yang Y, Ran J, Liu M, Li D, Li Y, Shi X, Meng D, Pan J, Ou G, Aneja R
CrossRef
Google scholar
|
[12] |
Yang Y, Hao H, Wu X, Guo S, Liu Y, Ran J, Li T, Li D, Liu M, Zhou J (2019) Mixed-lineage leukemia protein 2 suppresses ciliary assembly by the modulation of actin dynamics and vesicle transport. Cell Discov 5:33
CrossRef
Google scholar
|
[13] |
Yu F, Ran J, Zhou J (2016) Ciliopathies: does hdac6 represent a new therapeutic target? Trends Pharmacol Sci 37:114–119
CrossRef
Google scholar
|
[14] |
Yu F, Guo S, Li T, Ran J, Zhao W, Li D, Liu M, Yan X, Yang X, Zhu X
CrossRef
Google scholar
|
[15] |
Zhao H, Zhu L, Zhu Y, Cao J, Li S, Huang Q, Xu T, Huang X, Yan X, Zhu X (2013) The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis. Nat Cell Biol 15:1434
CrossRef
Google scholar
|
/
〈 | 〉 |