Rapid construction of a whole-genome mutant library by combining haploid stem cells and inducible self-inactivating PiggyBac transposon

Junjie Mao, Kai Xu, Jiabao Han, Guihai Feng, Ying Zhang, Wei Li

PDF(891 KB)
PDF(891 KB)
Protein Cell ›› 2020, Vol. 11 ›› Issue (6) : 452-457. DOI: 10.1007/s13238-020-00702-0
LETTER
LETTER

Rapid construction of a whole-genome mutant library by combining haploid stem cells and inducible self-inactivating PiggyBac transposon

Author information +
History +

Cite this article

Download citation ▾
Junjie Mao, Kai Xu, Jiabao Han, Guihai Feng, Ying Zhang, Wei Li. Rapid construction of a whole-genome mutant library by combining haploid stem cells and inducible self-inactivating PiggyBac transposon. Protein Cell, 2020, 11(6): 452‒457 https://doi.org/10.1007/s13238-020-00702-0

References

[1]
Chen Y, Yee D, Dains K, Chatterjee A, Cavalcoli J, Schneider E, Om J, Woychik RP, Magnuson T (2000) Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Nat Genet 24:314–317
CrossRef Google scholar
[2]
Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483
CrossRef Google scholar
[3]
Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA (2005) Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436:221–226
CrossRef Google scholar
[4]
He ZQ, Xia BL, Wang YK, Li J, Feng GH, Zhang LL, Li YH, Wan HF, Li TD, Xu K (2017) Generation of mouse haploid somatic cells by small molecules for genome-wide genetic screening. Cell reports 20:2227–2237
CrossRef Google scholar
[5]
Horn C, Hansen J, Schnutgen F, Seisenberger C, Floss T, Irgang M, De-Zolt S, Wurst W, von Melchner H, Noppinger PR (2007) Splinkerette PCR for more efficient characterization of gene trap events. Nat Genet 39:933–934
CrossRef Google scholar
[6]
Kong J, Wang F, Brenton JD, Adams DJ (2010) Slingshot: a PiggyBac based transposon system for tamoxifen-inducible ‘selfinactivating’ insertional mutagenesis. Nucleic acids Res 38:e173
CrossRef Google scholar
[7]
Leeb M, Dietmann S, Paramor M, Niwa H, Smith A (2014) Genetic exploration of the exit from self-renewal using haploid embryonic stem cells. Cell Stem Cell 14:385–393
CrossRef Google scholar
[8]
Li W, Shuai L, Wan H, Dong M, Wang M, Sang L, Feng C, Luo GZ, Li T, Li X (2012) Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature 490:407–411
CrossRef Google scholar
[9]
Liang Y, Li S, Chen L (2015) The physiological role of drug transporters. Protein Cell 6:334–350
CrossRef Google scholar
[10]
Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26
CrossRef Google scholar
[11]
Schneeberger K (2014) Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet 15:662–676
CrossRef Google scholar
[12]
Wang W, Bradley A, Huang Y (2009) A piggyBac transposon-based genome-wide library of insertionally mutated Blm-deficient murine ES cells. Genome Res 19:667–673
CrossRef Google scholar
[13]
Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84
CrossRef Google scholar
[14]
Wray J, Kalkan T, Gomez-Lopez S, Eckardt D, Cook A, Kemler R, Smith A (2011) Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol 13:838–845
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 The Author(s) 2020
AI Summary AI Mindmap
PDF(891 KB)

Accesses

Citations

Detail

Sections
Recommended

/