JMJD3 in the regulation of human diseases

Xiangxian Zhang, Li Liu, Xia Yuan, Yuquan Wei, Xiawei Wei

PDF(1149 KB)
PDF(1149 KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (12) : 864-882. DOI: 10.1007/s13238-019-0653-9
REVIEW
REVIEW

JMJD3 in the regulation of human diseases

Author information +
History +

Abstract

In recent years, many studies have shown that histone methylation plays an important role in maintaining the active and silent state of gene expression in human diseases. The Jumonji domain-containing protein D3 (JMJD3), specifically demethylate di- and trimethyllysine 27 on histone H3 (H3K27me2/3), has been widely studied in immune diseases, infectious diseases, cancer, developmental diseases, and aging related diseases. We will focus on the recent advances of JMJD3 function in human diseases, and looks ahead to the future of JMJD3 gene research in this review.

Keywords

histone methylation / JMJD3 / epigenetics / human diseases

Cite this article

Download citation ▾
Xiangxian Zhang, Li Liu, Xia Yuan, Yuquan Wei, Xiawei Wei. JMJD3 in the regulation of human diseases. Protein Cell, 2019, 10(12): 864‒882 https://doi.org/10.1007/s13238-019-0653-9

References

[1]
Agger K, Cloos PAC, Rudkjaer L, Williams K, Andersen G, Christensen J, Helin K (2009) The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev 23:1171–1176. https://doi.org/10.1101/gad.510809
CrossRef Google scholar
[2]
Agherbi H, Gaussmann-Wenger A, Verthuy C, Chasson L, Serrano M, Djabali M (2009) Polycomb mediated epigenetic silencing and replication timing at the INK4a/ARF locus during senescence. PLoS ONE 4:e5622. https://doi.org/10.1371/journal.pone.0005622
CrossRef Google scholar
[3]
Alexaki VI, Fodelianaki G, Neuwirth A, Mund C, Kourgiantaki A, Ieronimaki E, Lyroni K, Troullinaki M, Fujii C, Kanczkowski W (2018) DHEA inhibits acute microglia-mediated inflammation through activation of the TrkA-Akt1/2-CREB-Jmjd3 pathway. Mol Psychiatry 23:1410–1420. https://doi.org/10.1038/mp.2017.167
CrossRef Google scholar
[4]
Anderton JA, Bose S, Vockerodt M, Vrzalikova K, Wei W, Kuo M, Helin K, Christensen J, Rowe M, Murray PG (2011) The H3K27me3 demethylase, KDM6B, is induced by Epstein-Barr virus and over-expressed in Hodgkin’s Lymphoma. Oncogene 30:2037–2043. https://doi.org/10.1038/onc.2010.579
CrossRef Google scholar
[5]
Arcipowski KM, Martinez CA, Ntziachristos P (2016) Histone demethylases in physiology and cancer: a tale of two enzymes, JMJD3 and UTX. Curr Opin Genet Dev 36:59–67. https://doi.org/10.1016/j.gde.2016.03.010
CrossRef Google scholar
[6]
Arnold SJ, Hofmann UK, Bikoff EK, Robertson EJ (2008) Pivotal roles for eomesodermin during axis formation, epithelium-tomesenchyme transition and endoderm specification in the mouse. Development 135:501–511. https://doi.org/10.1242/dev.014357
CrossRef Google scholar
[7]
Arthur JSC, Ley SC (2013) Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13:679–692. https://doi.org/10.1038/nri3495
CrossRef Google scholar
[8]
Backe MB, Andersson JL, Bacos K, Christensen DP, Hansen JB, Dorosz JJ, Gajhede M, Dahlby T, Bysani M, Kristensen LH (2018) Lysine demethylase inhibition protects pancreatic β cells from apoptosis and improves β-cell function. Mol Cell Endocrinol 460:47–56. https://doi.org/10.1016/j.mce.2017.07.001
CrossRef Google scholar
[9]
Baronchelli S, La Spada A, Ntai A, Barbieri A, Conforti P, Jotti GS, Redaelli S, Bentivegna A, de Blasio P, Biunno I (2017) Epigenetic and transcriptional modulation of WDR5, a chromatin remodeling protein, in Huntington’s disease human induced pluripotent stem cell (hiPSC) model. Mol Cell Neurosci 82:46–57. https://doi.org/10.1016/j.mcn.2017.04.013
CrossRef Google scholar
[10]
Barradas M, Anderton E, Acosta JC, Li S, Banito A, Rodriguez-Niedenführ M, Maertens G, Banck M, Zhou M-M, Walsh MJ (2009) Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev 23:1177–1182. https://doi.org/10.1101/gad.511109
CrossRef Google scholar
[11]
Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837. https://doi.org/10.1016/j.cell.2007.05.009
CrossRef Google scholar
[12]
Belver L, Ferrando A (2016) The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer 16:494–507. https://doi.org/10.1038/nrc.2016.63
CrossRef Google scholar
[13]
Bergmann C, Brandt A, Merlevede B, Hallenberger L, Dees C, Wohlfahrt T, Pötter S, Zhang Y, Chen C-W, Mallano T (2018) The histone demethylase Jumonji domain-containing protein 3 (JMJD3) regulates fibroblast activation in systemic sclerosis. Ann Rheum Dis 77:150–158. https://doi.org/10.1136/annrheumdis-2017-211501
CrossRef Google scholar
[14]
Bianchi-Smiraglia A, Lipchick BC, Nikiforov MA (2017) The Immortal Senescence. Methods Mol Biol 1534:1–15. https://doi.org/10.1007/978-1-4939-6670-7_1
CrossRef Google scholar
[15]
Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Mönch K, Minucci S, Porse BT, Marine J-C (2007) The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21:525–530. https://doi.org/10.1101/gad.415507
CrossRef Google scholar
[16]
Burchfield JS, Li Q, Wang HY, Wang R-F (2015) JMJD3 as an epigenetic regulator in development and disease. Int J Biochem Cell Biol 67:148–157. https://doi.org/10.1016/j.biocel.2015.07. 006
CrossRef Google scholar
[17]
Burgess SL, Saleh M, Cowardin CA, Buonomo E, Noor Z, Watanabe K, Abhyankar M, Lajoie S, Wills-Karp M, Petri WA (2016) Role of serum amyloid A, granulocyte-macrophage colony-stimulating factor, and bone marrow granulocyte-monocyte precursor expansion in segmented filamentous bacterium-mediated protection from Entamoeba histolytica. Infect Immun 84:2824–2832. https://doi.org/10.1128/IAI.00316-16
CrossRef Google scholar
[18]
Cao H, Alrejaye N, Klein OD, Goodwin AF, Oberoi S (2017) A review of craniofacial and dental findings of the RASopathies. Orthod Craniofac Res 20(Suppl 1):32–38. https://doi.org/10.1111/ocr.12144
CrossRef Google scholar
[19]
Chen Z, Zang J, Whetstine J, Hong X, Davrazou F, Kutateladze TG, Simpson M, Mao Q, Pan CH, Dai S (2006) Structural insights into histone demethylation by JMJD2 family members. Cell 125:691–702. https://doi.org/10.1016/j.cell.2006.04.024
CrossRef Google scholar
[20]
Chen C, Wu M, Zhang W, Lu W, Zhang M, Zhang Z, Zhang X, Yuan Z (2016) MicroRNA-939 restricts Hepatitis B virus by targeting Jmjd3-mediated and C/EBPα-coordinated chromatin remodeling. Sci Rep 6:35974. https://doi.org/10.1038/srep35974
CrossRef Google scholar
[21]
Chen X, Xiu M, Xing J, Yu S, Min D, Guo F (2017) Lanthanum chloride inhibits LPS mediated expressions of pro-inflammatory cytokines and adhesion molecules in HUVECs: involvement of NF-kB-Jmjd3 signaling. Cell Physiol Biochem 42:1713–1724. https://doi.org/10.1159/000479439
CrossRef Google scholar
[22]
Chen Y, Liu Z, Pan T, Chen E, Mao E, Chen Y, Tan R, Wang X, Tian R, Liu J (2018) JMJD3 is involved in neutrophil membrane proteinase 3 overexpression during the hyperinflammatory response in early sepsis. Int Immunopharmacol 59:40–46. https://doi.org/10.1016/j.intimp.2018.03.027
CrossRef Google scholar
[23]
Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205. https://doi.org/10.1016/j.cell.2012.05.012
CrossRef Google scholar
[24]
Cribbs A, Hookway ES, Wells G, Lindow M, Obad S, Oerum H, Prinjha RK, Athanasou N, Sowman A, Philpott M (2018) Inhibition of histone H3K27 demethylases selectively modulates inflammatory phenotypes of natural killer cells. J Biol Chem 293:2422–2437. https://doi.org/10.1074/jbc.RA117.000698
CrossRef Google scholar
[25]
Das ND, Jung KH, Chai YG (2010) The role of NF-kB and H3K27me3 demethylase, Jmjd3, on the anthrax lethal toxin tolerance of RAW 264.7 cells. PLoS ONE 5:e9913. https://doi.org/10.1371/journal.pone.0009913
CrossRef Google scholar
[26]
Das ND, Jung KH, Choi MR, Yoon HS, Kim SH, Chai YG (2012) Gene networking and inflammatory pathway analysis in a JMJD3 knockdown human monocytic cell line. Cell Biochem Funct 30:224–232. https://doi.org/10.1002/cbf.1839
CrossRef Google scholar
[27]
Das A, Das ND, Jung KH, Park JH, Lee HT, Han D, Choi MR, Kang SC, Chai YG (2013) Proteomic changes induced by histone demethylase JMJD3 in TNF alpha-treated human monocytic (THP-1) cells. Mol Immunol 56:113–122. https://doi.org/10.1016/j.molimm.2013.04.013
CrossRef Google scholar
[28]
Das A, Arifuzzaman S, Yoon T, Kim SH, Chai JC, Lee YS, Jung KH, Chai YG (2017) RNA sequencing reveals resistance of TLR4 ligand-activated microglial cells to inflammation mediated by the selective jumonji H3K27 demethylase inhibitor. Sci Rep 7:6554. https://doi.org/10.1038/s41598-017-06914-5
CrossRef Google scholar
[29]
Daures M, Idrissou M, Judes G, Rifaï K, Penault-Llorca F, Bignon Y-J, Guy L, Bernard-Gallon D (2018) A new metabolic gene signature in prostate cancer regulated by JMJD3 and EZH2. Oncotarget 9:23413–23425. https://doi.org/10.18632/oncotarget. 25182
CrossRef Google scholar
[30]
David CJ, Massagué J (2018) Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol 19:419–435. https://doi.org/10.1038/s41580-018-0007-0
CrossRef Google scholar
[31]
de Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G (2007) The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130:1083–1094. https://doi.org/10.1016/j.cell.2007.08.019
CrossRef Google scholar
[32]
de Santa F, Narang V, Yap ZH, Tusi BK, Burgold T, Austenaa L, Bucci G, Caganova M, Notarbartolo S, Casola S (2009) Jmjd3 contributes to the control of gene expression in LPSactivated macrophages. EMBO J 28:3341–3352. https://doi.org/10.1038/emboj.2009.271
CrossRef Google scholar
[33]
Doñas C, Carrasco M, Fritz M, Prado C, Tejón G, Osorio-Barrios F, Manríquez V, Reyes P, Pacheco R, Bono MR (2016) The histone demethylase inhibitor GSK-J4 limits inflammation through the induction of a tolerogenic phenotype on DCs. J Autoimmun 75:105–117. https://doi.org/10.1016/j.jaut.2016.07.011
CrossRef Google scholar
[34]
Doorbar J, Egawa N, Griffin H, Kranjec C, Murakami I (2015) Human papillomavirus molecular biology and disease association. Rev Med Virol 25(Suppl 1):2–23. https://doi.org/10.1002/rmv.1822
CrossRef Google scholar
[35]
Ene CI, Edwards L, Riddick G, Baysan M, Woolard K, Kotliarova S, Lai C, Belova G, Cam M, Walling J (2012) Histone demethylase Jumonji D3 (JMJD3) as a tumor suppressor by regulating p53 protein nuclear stabilization. PLoS ONE 7:e51407. https://doi.org/10.1371/journal.pone.0051407
CrossRef Google scholar
[36]
Espín-Palazón R, Traver D (2016) The NF-kB family: key players during embryonic development and HSC emergence. Exp Hematol 44:519–527. https://doi.org/10.1016/j.exphem.2016.03.010
CrossRef Google scholar
[37]
Estarás C, Akizu N, García A, Beltrán S, de La Cruz X, Martínez-Balbás MA (2012) Genome-wide analysis reveals that Smad3 and JMJD3 HDM co-activate the neural developmental program. Development 139:2681–2691. https://doi.org/10.1242/dev.078345
CrossRef Google scholar
[38]
Estarás C, Fueyo R, Akizu N, Beltrán S, Martínez-Balbás MA (2013) RNA polymerase II progression through H3K27me3-enriched gene bodies requires JMJD3 histone demethylase. Mol Biol Cell 24:351–360. https://doi.org/10.1091/mbc.E12-07-0561
CrossRef Google scholar
[39]
Feinberg AP (2018) The key role of epigenetics in human disease prevention and mitigation. N Engl J Med 378:1323–1334. https://doi.org/10.1056/NEJMra1402513
CrossRef Google scholar
[40]
Gan X, Wang H, Yu Y, Yi W, Zhu S, Li E, Liang Y (2017) Epigenetically repressing human cytomegalovirus lytic infection and reactivation from latency in THP-1 model by targeting H3K9 and H3K27 histone demethylases. PLoS ONE 12:e0175390. https://doi.org/10.1371/journal.pone.0175390
CrossRef Google scholar
[41]
Gomez-Sanchez JA, Gomis-Coloma C, Morenilla-Palao C, Peiro G, Serra E, Serrano M, Cabedo H (2013) Epigenetic induction of the Ink4a/Arf locus prevents Schwann cell overproliferation during nerve regeneration and after tumorigenic challenge. Brain 136:2262–2278. https://doi.org/10.1093/brain/awt130
CrossRef Google scholar
[42]
Guo Z, Lu J, Li J, Wang P, Li Z, Zhong Y, Guo K, Wang J, Ye J, Liu P (2018) JMJD3 inhibition protects against isoproterenol-induced cardiac hypertrophy by suppressing β-MHC expression. Mol Cell Endocrinol 477:1–14. https://doi.org/10.1016/j.mce.2018.05.009
CrossRef Google scholar
[43]
Ha S-D, Cho W, Kim SO (2017) HDAC8 prevents anthrax lethal toxin-induced cell cycle arrest through silencing PTEN in human monocytic THP-1 cells. Toxins (Basel).https://doi.org/10.3390/toxins9050162
CrossRef Google scholar
[44]
Hanisch U-K (2014) Linking STAT and TLR signaling in microglia: a new role for the histone demethylase Jmjd3. J Mol Med 92:197–200. https://doi.org/10.1007/s00109-014-1122-9
CrossRef Google scholar
[45]
He R, Feng J, Xun Q, Qin Q, Hu C (2013) High-intensity training induces EIB in rats through neuron; transdifferentiation of adrenal medulla chromaffin cells. Am J Physiol Lung Cell Mol Physiol 304:L602–L612. https://doi.org/10.1152/ajplung.00406.2012
CrossRef Google scholar
[46]
He C, Larson-Casey JL, Gu L, Ryan AJ, Murthy S, Carter AB (2016) Cu,Zn-superoxide dismutase-mediated redox regulation of jumonji domain containing 3 modulates macrophage polarization and pulmonary fibrosis. Am J Respir Cell Mol Biol 55:58–71. https://doi.org/10.1165/rcmb.2015-0183OC
CrossRef Google scholar
[47]
Holla S, Prakhar P, Singh V, Karnam A, Mukherjee T, Mahadik K, Parikh P, Singh A, Rajmani RS, Ramachandra SG (2016) MUSASHI-mediated expression of JMJD3, a H3K27me3 demethylase, is involved in foamy macrophage generation during mycobacterial infection. PLoS Pathog 12:e1005814. https://doi.org/10.1371/journal.ppat.1005814
CrossRef Google scholar
[48]
Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K (2007) Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci USA 104:18439–18444. https://doi.org/10.1073/pnas.0707292104
CrossRef Google scholar
[49]
Hong Z, Li H, Li L, Wang W, Xu T (2017) Different expression patterns of histone H3K27 demethylases in renal cell carcinoma and bladder cancer. Cancer Biomark 18:125–131. https://doi.org/10.3233/CBM-160003
CrossRef Google scholar
[50]
Hsu P, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278. https://doi.org/10.1016/j.cell.2014.05.010
CrossRef Google scholar
[51]
Hsu AT, Lupancu TJ, Lee M-C, Fleetwood AJ, Cook AD, Hamilton JA, Achuthan A (2018) Epigenetic and transcriptional regulation of IL4-induced CCL17 production in human monocytes and murine macrophages. J Biol Chem 293:11415–11423. https://doi.org/10.1074/jbc.RA118.002416
CrossRef Google scholar
[52]
Hu S, Han C, Hu JH, Zhu HJ (2017) Research progress on histone demethylase JMJD3. Biotechnol Bull 33(10):1–7
[53]
Inoue S-I, Takahara S, Yoshikawa T, Niihori T, Yanai K, Matsubara Y, Aoki Y (2017) Activated Braf induces esophageal dilation and gastric epithelial hyperplasia in mice. Hum Mol Genet 26:4715–4727. https://doi.org/10.1093/hmg/ddx354
CrossRef Google scholar
[54]
Ishii M, Wen H, Corsa CAS, Liu T, Coelho AL, Allen RM, Carson WF, Cavassani KA, Li X, Lukacs NW (2009) Epigenetic regulation of the alternatively activated macrophage phenotype. Blood 114:3244–3254. https://doi.org/10.1182/blood-2009-04-217620
CrossRef Google scholar
[55]
Jia W, Wu W, Yang D, Xiao C, Su Z, Huang Z, Li Z, Qin M, Huang M, Liu S (2018) Histone demethylase JMJD3 regulates fibroblast-like synoviocyte-mediated proliferation and joint destruction in rheumatoid arthritis. FASEB J 32:4031–4042. https://doi.org/10.1096/fj.201701483R
CrossRef Google scholar
[56]
Jin Q, Martinez CA, Arcipowski KM, Zhu Y, Gutierrez-Diaz BT, Wang KK, Johnson MR, Volk AG, Wang F, Wu J (2019) USP7 cooperates with NOTCH1 to drive the oncogenic transcriptional program in T-cell leukemia. Clin Cancer Res 25:222–239. https://doi.org/10.1158/1078-0432.CCR-18-1740
CrossRef Google scholar
[57]
Kartikasari AER, Zhou JX, Kanji MS, Chan DN, Sinha A, Grapin-Botton A, Magnuson MA, Lowry WE, Bhushan A (2013) The histone demethylase Jmjd3 sequentially associates with the transcription factors Tbx3 and Eomes to drive endoderm differentiation. EMBO J 32:1393–1408. https://doi.org/10.1038/emboj.2013.78
CrossRef Google scholar
[58]
Kim SW, Yoon S-J, Chuong E, Oyolu C, Wills AE, Gupta R, Baker J (2011) Chromatin and transcriptional signatures for Nodal signaling during endoderm formation in hESCs. Dev Biol 357:492–504. https://doi.org/10.1016/j.ydbio.2011.06.009
CrossRef Google scholar
[59]
Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7:715–727. https://doi.org/10.1038/nrg1945
CrossRef Google scholar
[60]
Kruidenier L, Chung C-W, Cheng Z, Liddle J, Che K, Joberty G, Bantscheff M, Bountra C, Bridges A, Diallo H (2012) A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488:404–408. https://doi.org/10.1038/nature11262
CrossRef Google scholar
[61]
LaMere SA, Thompson RC, Meng X, Komori HK, Mark A, Salomon DR (2017) H3K27 methylation dynamics during CD4 T cell activation: regulation of JAK/STAT and IL12RB2 expression by JMJD3. J Immunol 199:3158–3175. https://doi.org/10.4049/jimmunol.1700475
CrossRef Google scholar
[62]
Lee K, Na W, Lee JY, Na J, Cho H, Wu H, Yune TY, Kim W-S, Ju B-G (2012) Molecular mechanism of Jmjd3-mediated interleukin-6 gene regulation in endothelial cells underlying spinal cord injury. J Neurochem 122:272–282. https://doi.org/10.1111/j.1471-4159.2012.07786.x
CrossRef Google scholar
[63]
Lee H-Y, Choi K, Oh H, Park Y-K, Park H (2014a) HIF-1-dependent induction of Jumonji domain-containing protein (JMJD) 3 under hypoxic conditions. Mol Cells 37:43–50. https://doi.org/10.14348/molcells.2014.2250
CrossRef Google scholar
[64]
Lee HT, Kim SK, Kim SH, Kim K, Lim CH, Park J, Roh T-Y, Kim N, Chai YG (2014b) Transcription-related element gene expression pattern differs between microglia and macrophages during inflammation. Inflamm Res 63:389–397. https://doi.org/10.1007/s00011-014-0711-y
CrossRef Google scholar
[65]
Lee JY, Na WH, Choi HY, Lee KH, Ju BG, Yune TY (2016) Jmjd3 mediates blood–spinal cord barrier disruption after spinal cord injury by regulating MMP-3 and MMP-9 expressions. Neurobiol Dis 95:66–81. https://doi.org/10.1016/j.nbd.2016.07.015
CrossRef Google scholar
[66]
Lee M-C, Saleh R, Achuthan A, Fleetwood AJ, Förster I, Hamilton JA, Cook AD (2018) CCL17 blockade as a therapy for osteoarthritis pain and disease. Arthritis Res Ther 20:62. https://doi.org/10.1186/s13075-018-1560-9
CrossRef Google scholar
[67]
Li Q, Zou J, Wang M, Ding X, Chepelev I, Zhou X, Zhao W, Wei G, Cui J, Zhao K(2014) Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T-cell differentiation. Nat Commun 5:5780. https://doi.org/10.1038/ncomms6780
CrossRef Google scholar
[68]
Li Y, Zhang M, Sheng M, Zhang P, Chen Z, Xing W, Bai J, Cheng T, Yang F-C, Zhou Y (2018) Therapeutic potential of GSK-J4, a histone demethylase KDM6B/JMJD3 inhibitor, for acute myeloid leukemia. J Cancer Res Clin Oncol 144:1065–1077. https://doi.org/10.1007/s00432-018-2631-7
CrossRef Google scholar
[69]
Li S-H, Lu H-I, Chen Y-H, Lo C-M, Huang W-T, Tien W-Y, Lan Y-C, Tsai H-T, Chen C-H (2019) JMJD3 expression is an independent prognosticator in patients with esophageal squamous cell carcinoma. Surgery 165:946–952. https://doi.org/10.1016/j.surg.2018.11.015
CrossRef Google scholar
[70]
Liang S, Yao Q, Wei D, Liu M, Geng F, Wang Q, Wang Y-S (2019) KDM6B promotes ovarian cancer cell migration and invasion by induced transforming growth factor-β1 expression. J Cell Biochem 120:493–506. https://doi.org/10.1002/jcb.27405
CrossRef Google scholar
[71]
Lochmann TL, Powell KM, Ham J, Floros KV, Heisey DAR, Kurupi RIJ, Calbert ML, Ghotra MS, Greninger P, Dozmorov M (2018) Targeted inhibition of histone H3K27 demethylation is effective in high-risk neuroblastoma. Sci Transl Med 10: eaao4680. https://doi.org/10.1126/scitranslmed.aao4680
CrossRef Google scholar
[72]
Lulla RR, Saratsis AM, Hashizume R (2016) Mutations in chromatin machinery and pediatric high-grade glioma. Sci Adv 2:e1501354. https://doi.org/10.1126/sciadv.1501354
CrossRef Google scholar
[73]
Luo X, Yang D, Wu W, Long F, Xiao C, Qin M, Law BY, Suguro R, Xu X, Qu L (2018) Critical role of histone demethylase Jumonji domain-containing protein 3 in the regulation of neointima formation following vascular injury. Cardiovasc Res 114:1894–1906. https://doi.org/10.1093/cvr/cvy176
CrossRef Google scholar
[74]
Majumder S, Thieme K, Batchu SN, Alghamdi TA, Bowskill BB, Kabir MG, Liu Y, Advani SL, White KE, Geldenhuys L (2018) Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease. J Clin Investig 128:483–499. https://doi.org/10.1172/JCI95946
CrossRef Google scholar
[75]
Mathur R, Sehgal L, Havranek O, Köhrer S, Khashab T, Jain N, Burger JA, Neelapu SS, Davis RE, Samaniego F (2017) Inhibition of demethylase KDM6B sensitizes diffuse large B-cell lymphoma to chemotherapeutic drugs. Haematologica 102:373–380. https://doi.org/10.3324/haematol.2016.144964
CrossRef Google scholar
[76]
Mei JH, Tang G, Wang Q, Wen PQ, Xu MG, Cui D, Ma DL, Liu C, Wang GB (2017) Role of ash2 (absent, small, or homeotic)-like and Jumonji domain-containing protein 3 on histone methylation of interferon-gamma gene and their associations with vascular damage of Kawasaki disease. Zhonghua Xin Xue Guan Bing Za Zhi 45:791–798. https://doi.org/10.3760/cma.j.issn.0253-3758.2017.09.012
[77]
Meng Y-H, Zhou W-J, Jin L-P, Liu L-B, Chang K-K, Mei J, Li H, Wang J, Li D-J, Li M-Q (2017) RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis 8: e3105. https://doi.org/10.1038/cddis.2017.505
CrossRef Google scholar
[78]
Merkwirth C, Jovaisaite V, Durieux J, Matilainen O, Jordan SD, Quiros PM, Steffen KK, Williams EG, Mouchiroud L, Tronnes SU (2016) Two conserved histone demethylases regulate mitochondrial stress-induced longevity. Cell 165:1209–1223. https://doi.org/10.1016/j.cell.2016.04.012
CrossRef Google scholar
[79]
Miller SA, Weinmann AS (2009) An essential interaction between T-box proteins and histone-modifying enzymes. Epigenetics 4:85–88. https://doi.org/10.4161/epi.4.2.8111
CrossRef Google scholar
[80]
Miller SA, Weinmann AS (2010) Molecular mechanisms by which T-bet regulates T-helper cell commitment. Immunol Rev 238:233–246. https://doi.org/10.1111/j.1600-065X.2010.00952.x
CrossRef Google scholar
[81]
Mohan M, Kaushal D, Aye PP, Alvarez X, Veazey RS, Lackner AA (2013) Focused examination of the intestinal epithelium reveals transcriptional signatures consistent with disturbances in enterocyte maturation and differentiation during the course of SIV infection. PLoS ONE 8:e60122. https://doi.org/10.1371/journal.pone.0060122
CrossRef Google scholar
[82]
Mozzetta C, Boyarchuk E, Pontis J, Ait-Si-Ali S (2015) Sound of silence: the properties and functions of repressive Lys methyltransferases. Nat Rev Mol Cell Biol 16:499–513. https://doi.org/10.1038/nrm4029
CrossRef Google scholar
[83]
Murray PJ (2017) Macrophage polarization. Annu Rev Physiol 79:541–566. https://doi.org/10.1146/annurev-physiol-022516-034339
CrossRef Google scholar
[84]
Na J, Lee K, Na W, Shin J-Y, Lee M-J, Yune TY, Lee HK, Jung H-S, Kim WS, Ju B-G (2016) Histone H3K27 demethylase JMJD3 in cooperation with NF-kB regulates keratinocyte wound healing. J Investig Dermatol 136:847–858. https://doi.org/10.1016/j.jid.2015.11.029
CrossRef Google scholar
[85]
Naruse C, Shibata S, Tamura M, Kawaguchi T, Abe K, Sugihara K, Kato T, Nishiuchi T, Wakana S, Ikawa M (2017) New insights into the role of Jmjd3 and Utx in axial skeletal formation in mice. FASEB J 31:2252–2266. https://doi.org/10.1096/fj.201600642
CrossRef Google scholar
[86]
RNtziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S, Xu L, Loizou E, Holmfeldt L, Strikoudis A, King B (2014) Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 514:513–517. https://doi.org/10.1038/nature13605
CrossRef Google scholar
[87]
Nusse R, Clevers H (2017) Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985–999. https://doi.org/10.1016/j.cell.2017.05.016
CrossRef Google scholar
[88]
Odorisio T (2016) Epigenetic control of skin re-epithelialization: the NF-kB/JMJD3 connection. J Investig Dermatol 136:738–740. https://doi.org/10.1016/j.jid.2016.01.010
CrossRef Google scholar
[89]
Ohguchi H, Harada T, Sagawa M, Kikuchi S, Tai Y-T, Richardson PG, Hideshima T, Anderson KC (2017) KDM6B modulates MAPK pathway mediating multiple myeloma cell growth and survival. Leukemia 31:2661–2669. https://doi.org/10.1038/leu.2017.141
CrossRef Google scholar
[90]
Ohtani K, Zhao C, Dobreva G, Manavski Y, Kluge B, Braun T, Rieger MA, Zeiher AM, Dimmeler S (2013) Jmjd3 controls mesodermal and cardiovascular differentiation of embryonic stem cells. Circ Res 113:856–862. https://doi.org/10.1161/CIRCRESAHA.113. 302035
CrossRef Google scholar
[91]
Park DH, Hong SJ, Salinas RD, Liu SJ, Sun SW, Sgualdino J, Testa G, Matzuk MM, Iwamori N, Lim DA (2014) Activation of neuronal gene expression by the JMJD3 demethylase is required for postnatal and adult brain neurogenesis. Cell Rep 8:1290–1299. https://doi.org/10.1016/j.celrep.2014.07.060
CrossRef Google scholar
[92]
Park W-Y, Hong B-J, Lee J, Choi C, Kim M-Y (2016) H3K27 demethylase JMJD3 employs the NF-κB and BMP signaling pathways to modulate the tumor microenvironment and promote melanoma progression and metastasis. Cancer Res 76:161–170. https://doi.org/10.1158/0008-5472.CAN-15-0536
CrossRef Google scholar
[93]
Park JW, Cho H, Oh H, Kim J-Y, Seo S-B (2018) AURKA suppresses leukemic THP-1 cell differentiation through inhibition of the KDM6B pathway. Mol Cells 41:444–453. https://doi.org/10.14348/molcells.2018.2311
[94]
Pasparakis M (2009) Regulation of tissue homeostasis by NF-kB signalling: implications for inflammatory diseases. Nat Rev Immunol 9:778–788. https://doi.org/10.1038/nri2655
CrossRef Google scholar
[95]
Penas C, Navarro X (2018) Epigenetic modifications associated to neuroinflammation and neuropathic pain after neural trauma. Front Cell Neurosci 12:158. https://doi.org/10.3389/fncel.2018. 00158
CrossRef Google scholar
[96]
Pereira F, Barbáchano A, Silva J, Bonilla F, Campbell MJ, Muñoz A, Larriba MJ (2011) KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Hum Mol Genet 20:4655–4665. https://doi.org/10.1093/hmg/ddr399
CrossRef Google scholar
[97]
Pereira F, Barbáchano A, Singh PK, Campbell MJ, Muñoz A, Larriba MJ (2012) Vitamin D has wide regulatory effects on histone demethylase genes. Cell Cycle 11:1081–1089. https://doi.org/10.4161/cc.11.6.19508
CrossRef Google scholar
[98]
Perrigue PM, Silva ME, Warden CD, Feng NL, Reid MA, Mota DJ, Joseph LP, Tian YI, Glackin CA, Gutova M (2015) The histone demethylase jumonji coordinates cellular senescence including secretion of neural stem cell-attracting cytokines. Mol Cancer Res 13:636–650. https://doi.org/10.1158/1541-7786. MCR-13-0268
CrossRef Google scholar
[99]
Pham D, Yu Q, Walline CC, Muthukrishnan R, Blum JS, Kaplan MH (2013) Opposing roles of STAT4 and Dnmt3a in Th1 gene regulation. J Immunol 191:902–911. https://doi.org/10.4049/jimmunol.1203229
CrossRef Google scholar
[100]
Pinheiro I, Malhão F, Madureira TV, João Rocha M, Monteiro RAF, Rocha E (2015) Ethinylestradiol exposure of primary culture brown trout hepatocytes induce morphological changes in peroxisomes. Microsc Microanal 21(Suppl 5):81–82. https://doi.org/10.1017/S143192761501421X
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 The Author(s) 2019
AI Summary AI Mindmap
PDF(1149 KB)

Accesses

Citations

Detail

Sections
Recommended

/