Ubiquitin is double-phosphorylated by PINK1 for enhanced pH-sensitivity of conformational switch

Shang-Xiang Ye, Zhou Gong, Ju Yang, Yu-Xin An, Zhu Liu, Qun Zhao, Ewen Lescop, Xu Dong, Chun Tang

PDF(1417 KB)
PDF(1417 KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (12) : 908-913. DOI: 10.1007/s13238-019-0644-x
LETTER
LETTER

Ubiquitin is double-phosphorylated by PINK1 for enhanced pH-sensitivity of conformational switch

Author information +
History +

Cite this article

Download citation ▾
Shang-Xiang Ye, Zhou Gong, Ju Yang, Yu-Xin An, Zhu Liu, Qun Zhao, Ewen Lescop, Xu Dong, Chun Tang. Ubiquitin is double-phosphorylated by PINK1 for enhanced pH-sensitivity of conformational switch. Protein Cell, 2019, 10(12): 908‒913 https://doi.org/10.1007/s13238-019-0644-x

References

[1]
Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C, Sonenberg N, Kay LE, Forman-Kay JD (2015) Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature 519:106–109
CrossRef Google scholar
[2]
Berezhnov AV, Soutar MP, Fedotova EI, Frolova MS, Plun-Favreau H, Zinchenko VP, Abramov AY (2016) Intracellular pH modulates autophagy and mitophagy. J Biol Chem 291:8701–8708
CrossRef Google scholar
[3]
Bienkiewicz EA, Lumb KJ (1999) Random-coil chemical shifts of phosphorylated amino acids. J Biomol NMR 15:203–206
CrossRef Google scholar
[4]
Dong X, Gong Z, Lu Y-B, Liu K, Qin L-Y, Ran M-L, Zhang C-L, Liu Z, Zhang W-P, Tang C (2017) Ubiquitin S65 phosphorylation engenders a pH-sensitive conformational switch. Proc Natl Acad Sci USA 114:6770–6775
CrossRef Google scholar
[5]
Gao J, Li M, Qin S, Zhang T, Jiang S, Hu Y, Deng Y, Zhang C, You D, Li H (2016) Cytosolic PINK1 promotes the targeting of ubiquitinated proteins to the aggresome-autophagy pathway during proteasomal stress. Autophagy 12:632–647
CrossRef Google scholar
[6]
Gladkova C, Schubert AF, Wagstaff JL, Pruneda JN, Freund SM, Komander D (2017) An invisible ubiquitin conformation is required for efficient phosphorylation by PINK1. EMBO J 36:3555–3572
CrossRef Google scholar
[7]
Gladkova C, Maslen SL, Skehel JM, Komander D (2018) Mechanism of parkin activation by PINK1. Nature 559:410–414
CrossRef Google scholar
[8]
Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205:143–153
CrossRef Google scholar
[9]
Kapuy O, Barik D, Sananes MR, Tyson JJ, Novak B (2009) Bistability by multiple phosphorylation of regulatory proteins. Prog Biophys Mol Biol 100:47–56
CrossRef Google scholar
[10]
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510:162–166
CrossRef Google scholar
[11]
Liu Z, Gong Z, Dong X, Tang C (2016) Transient protein-protein interactions visualized by solution NMR. Biochim Biophys Acta Proteins Proteomics 1864:115–122
CrossRef Google scholar
[12]
Okatsu K, Sato Y, Yamano K, Matsuda N, Negishi L, Takahashi A, Yamagata A, Goto-Ito S, Mishima M, Ito Y (2018) Structural insights into ubiquitin phosphorylation by PINK1. Sci Rep 8:10382
CrossRef Google scholar
[13]
Schoppa NE, McCormack K, Tanouye MA, Sigworth FJ (1992) The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255:1712–1715
CrossRef Google scholar
[14]
Swatek KN, Komander D (2016) Ubiquitin modifications. Cell Res 26:399–422
CrossRef Google scholar
[15]
White KA, Grillo-Hill BK, Barber DL (2017) Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J Cell Sci 130:663–669
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 The Author(s)
AI Summary AI Mindmap
PDF(1417 KB)

Accesses

Citations

Detail

Sections
Recommended

/