HBB-deficient Macaca fascicularis monkey presents with human β-thalassemia

Yan Huang, Chenhui Ding, Puping Liang, Duanduan Li, Yu Tang, Wei Meng, Hongwei Sun, Hongyu Lu, Yu Chen, Xueying Chen, Qunshan Huang, Jianpei Fang, Canquan Zhou, Shihua Yang, Junjiu Huang

PDF(822 KB)
PDF(822 KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (7) : 538-542. DOI: 10.1007/s13238-019-0627-y
LETTER
LETTER

HBB-deficient Macaca fascicularis monkey presents with human β-thalassemia

Author information +
History +

Cite this article

Download citation ▾
Yan Huang, Chenhui Ding, Puping Liang, Duanduan Li, Yu Tang, Wei Meng, Hongwei Sun, Hongyu Lu, Yu Chen, Xueying Chen, Qunshan Huang, Jianpei Fang, Canquan Zhou, Shihua Yang, Junjiu Huang. HBB-deficient Macaca fascicularis monkey presents with human β-thalassemia. Protein Cell, 2019, 10(7): 538‒542 https://doi.org/10.1007/s13238-019-0627-y

References

[1]
El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Günther S, Fukuda N, Kikhi K, Boezio GLM, Takacs CM, Lai SL (2019) Genetic compensation triggered by mutant mRNA degradation. Nature 568:193–197
CrossRef Google scholar
[2]
Eldibany MM, Totonchi KF, Joseph NJ, Rhone D (1999) Usefulness of certain red blood cell indices in diagnosing and differentiating thalassemia trait from iron-deficiency anemia. Am J Clin Pathol 111:676–682
CrossRef Google scholar
[3]
Glaser A, McColl B, Vadolas J (2015) The therapeutic potential of genome editing for beta-thalassemia. F1000Research. https://doi.org/10.12688/f1000research.7087.1
CrossRef Google scholar
[4]
Huo Y, McConnell SC, Ryan TM (2009) Preclinical transfusiondependent humanized mouse model of beta thalassemia major. Blood 113:4763–4770
CrossRef Google scholar
[5]
Liu Z, Cai Y, Wang Y, Nie Y, Zhang C, Xu Y, Zhang X, Lu Y, Wang Z, Poo M (2018) Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 172:881–887, e887
CrossRef Google scholar
[6]
Ma Z, Zhu P, Shi H, Guo L, Zhang Q, Chen Y, Chen S, Zhang Z, Peng J, Chen J (2019) PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature 568:259–263
CrossRef Google scholar
[7]
McColl B, Vadolas J (2016) Animal models of beta-hemoglobinopathies: utility and limitations. J Blood Med 7:263–274
CrossRef Google scholar
[8]
Nienhuis AW, Nathan DG (2012) Pathophysiology and clinical manifestations of the beta-thalassemias. Cold Spring Harb Perspect Med 2:a011726
CrossRef Google scholar
[9]
Origa R (2017) beta-Thalassemia. Genet Med Off J Am Coll Med Genet 19:609–619
CrossRef Google scholar
[10]
Phillips KA, Bales KL, Capitanio JP, Conley A, Czoty PW, ’t Hart BA, Hopkins WD, Hu SL, Miller LA, Nader MA (2014) Why primate models matter. Am J Primatol 76:801–827
CrossRef Google scholar
[11]
Scott R, Anyaibe S, Yancey A, Headings V (1986) Fetal hemoglobin distributions among adult baboon and macaque species. Primates 27:259–268
CrossRef Google scholar
[12]
So CC, So AC, Chan AY, Tsang ST, Ma ES, Chan LC (2009) Detection and characterisation of beta-globin gene cluster deletions in Chinese using multiplex ligation-dependent probe amplification. J Clin Pathol 62:1107–1111
CrossRef Google scholar
[13]
Thompson AA, Walters MC, Kwiatkowski J, Rasko JEJ, Ribeil JA, Hongeng S, Magrin E, Schiller GJ, Payen E, Semeraro M (2018) Gene therapy in patients with transfusion-dependent betathalassemia. N Engl J Med 378:1479–1493
CrossRef Google scholar
[14]
Xiong F, Sun M, Zhang X, Cai R, Zhou Y, Lou J, Zeng L, Sun Q, Xiao Q, Shang X (2010) Molecular epidemiological survey of haemoglobinopathies in the Guangxi Zhuang Autonomous Region of Southern China. Clin Genet 78:139–148
CrossRef Google scholar
[15]
Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, Ren R, Liu Z, Zhang L, Chen Z (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560:661–665
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 The Author(s) 2019
AI Summary AI Mindmap
PDF(822 KB)

Accesses

Citations

Detail

Sections
Recommended

/