Genetic evidence for asymmetric blocking of higher-order chromatin structure by CTCF/cohesin

Yujia Lu , Jia Shou , Zhilian Jia , Yonghu Wu , Jinhuan Li , Ya Guo , Qiang Wu

Protein Cell ›› 2019, Vol. 10 ›› Issue (12) : 914 -920.

PDF (953KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (12) : 914 -920. DOI: 10.1007/s13238-019-00656-y
LETTER
LETTER

Genetic evidence for asymmetric blocking of higher-order chromatin structure by CTCF/cohesin

Author information +
History +
PDF (953KB)

Cite this article

Download citation ▾
Yujia Lu, Jia Shou, Zhilian Jia, Yonghu Wu, Jinhuan Li, Ya Guo, Qiang Wu. Genetic evidence for asymmetric blocking of higher-order chromatin structure by CTCF/cohesin. Protein Cell, 2019, 10(12): 914-920 DOI:10.1007/s13238-019-00656-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Canzio D, Nwakeze CL, Horta A, Rajkumar SM, Coffey EL, Duffy EE, Duffie R, Monahan K, O’Keeffe S, Simon MD (2019) Antisense lncRNA transcription mediates DNA demethylation to drive stochastic protocadherin alpha promoter choice. Cell 177 (639–653):e615

[2]

Guo Y, Monahan K, Wu H, Gertz J, Varley KE, Li W, Myers RM, Maniatis T, Wu Q (2012) CTCF/cohesin-mediated DNA looping is required for protocadherin alpha promoter choice. Proc Natl Acad Sci USA 109:21081–21086

[3]

Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin DU, Jung I, Wu H, Zhai Y, Tang Y (2015) CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162:900–910

[4]

Huang HY, Wu Q (2016) CRISPR double cutting through the labyrinthine architecture of 3D genomes. J Genet Genomics 43:273–288

[5]

Jain S, Ba Z, Zhang Y, Dai HQ, Alt FW (2018) CTCF-binding elements mediate accessibility of RAG substrates during chromatin scanning. Cell 174(102–116):e114

[6]

Jiang Y, Loh YE, Rajarajan P, Hirayama T, Liao W, Kassim BS, Javidfar B, Hartley BJ, Kleofas L, Park RB (2017) The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. Nat Genet 49:1239–1250

[7]

Monahan K, Rudnick ND, Kehayova PD, Pauli F, Newberry KM, Myers RM, Maniatis T (2012) Role of CCCTC binding factor (CTCF) and cohesin in the generation of single-cell diversity of protocadherin-alpha gene expression. Proc Natl Acad Sci USA 109:9125–9130

[8]

Mountoufaris G, Canzio D, Nwakeze CL, Chen WV, Maniatis T (2018) Writing, reading, and translating the clustered protocadherin cell surface recognition code for neural circuit assembly. Annu Rev Cell Dev Biol 34:471–493

[9]

Ribich S, Tasic B, Maniatis T (2006) Identification of long-range regulatory elements in the protocadherin-alpha gene cluster. Proc Natl Acad Sci USA 103:19719–19724

[10]

Rowley MJ, Corces VG (2018) Organizational principles of 3D genome architecture. Nat Rev Genet 19:789–800

[11]

Shou J, Li J, Liu Y, Wu Q (2018) Precise and predictable CRISPR chromosomal rearrangements reveal principles of Cas9-mediated nucleotide insertion. Mol Cell 71(498–509):e494

[12]

Wu Q, Zhang T, Cheng JF, Kim Y, Grimwood J, Schmutz J, Dickson M, Noonan JP, Zhang MQ, Myers RM (2001) Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res 11:389–404

[13]

Wu Q, Guo Y, Lu Y, Li J, Wu Y, Jia Z (2019) Tandem directional CTCF sites balance protocadherin promoter usage. bioRxiv.

[14]

Yin M, Wang J, Wang M, Li X, Zhang M, Wu Q, Wang Y (2017) Molecular mechanism of directional CTCF recognition of a diverse range of genomic sites. Cell Res 27:1365–1377

[15]

Yokota S, Hirayama T, Hirano K, Kaneko R, Toyoda S, Kawamura Y, Hirabayashi M, Hirabayashi T, Yagi T (2011) Identification of the cluster control region for the protocadherin-beta genes located beyond the protocadherin-gamma cluster. J Biol Chem 286:31885–31895

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF (953KB)

Supplementary files

PAC-0914-19273-WQ_suppl_1

443

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/